Glutaminase in Arterial Injury and Disease

谷氨酰胺酶在动脉损伤和疾病中的作用

基本信息

  • 批准号:
    10630196
  • 负责人:
  • 金额:
    $ 39.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-23 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The broad long-term goal of this proposal is to establish the enzyme glutaminase-1 (GLS1) as a critical mediator of lesion formation in arterial injury and disease. GLS1 is a mitochondrial enzyme that metabolizes glutamine (Gln) to glutamate (Glu) and ammonia (NH3). GLS1 plays a critical role in neurotransmission, acid- base balance, angiogenesis, hepatic fibrosis, and tumor growth, but little is known regarding the function of GLS1 in vascular smooth muscle cells (SMCs). However, preliminary studies demonstrated that the proliferation, migration, and survival of SMCs is highly dependent on the presence of Gln. It was also discovered that SMCs exclusively express the GLS1 isoform, that overexpression of GLS1 stimulates SMC migration, and that inhibition of GLS1 activity or expression blocks SMC DNA synthesis or migration, respectively. Moreover, Glu, but not NH3, substitutes for Gln in promoting SMC proliferation and collagen synthesis. Additional experiments revealed that growth factors and glucose stimulate GLS1 activity in vascular SMCs. Final pilot experiments also demonstrated that arterial injury and diabetes induces the expression of GLS1 in the vessel wall, and that inhibition of GLS1 activity or genetic depletion of GLS1 attenuates neointima formation following arterial injury as well as arterial fibrosis and stiffening in diabetic animals. Based on these findings, it is proposed that GLS1 plays an integral role in aberrant arterial remodeling by stimulating SMC proliferation, migration, collagen synthesis, and survival by metabolizing Gln to Glu and NH3. This hypothesis will be tested in three interrelated specific aims. In aim 1, the role of GLS1 in regulating SMC function will be determined. These studies will investigate the effect of GLS1 gene delivery on SMC proliferation, migration, collagen synthesis and survival, and determine the role of the various GLS1 products on these processes. They will also explore if the induction of GLS1 by growth factors contributes to their ability to promote SMC proliferation, migration, and collagen synthesis. In aim 2, the role of GLS1 in regulating the arterial response to injury will be established. These studies will examine the time-course of GLS1 expression in injured rodent carotid arteries, and determine if pharmacological inhibition of GLS1 activity, silencing GLS1 expression, or genetic deletion of GLS1 in SMCs attenuates the remodeling response following arterial injury. In aim 3, the role of GLS1 in aberrant arterial remodeling and hypertension in diabetes will be investigated. These studies will examine the effect of glucose on GLS1 expression both in cultured vascular SMCs and in arteries from diabetic mice. In addition, they will examine if GLS1 contributes to glucose-mediated alterations in SMC function, arterial remodeling, and hypertension in diabetic mice. It is anticipated that these studies will establish GLS1 as a key regulator of SMC proliferation, migration, collagen synthesis, and survival. They may also also identify GLS1 and its products as novel contributors to lesion formation following arterial injury, and establish GLS1 as a new translational target in treating abnormal remodeling and hypertension in diabetes.
项目总结

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Targeting Arginine in COVID-19-Induced Immunopathology and Vasculopathy.
  • DOI:
    10.3390/metabo12030240
  • 发表时间:
    2022-03-11
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Durante W
  • 通讯作者:
    Durante W
Canagliflozin Regulates Human Endothelial Cell Function: Role of Heme Oxygenase-1.
Canagliflozin 调节人内皮细胞功能:血红素加氧酶 1 的作用。
Glutamine Deficiency Promotes Immune and Endothelial Cell Dysfunction in COVID-19.
Canagliflozin Inhibits Human Endothelial Cell Inflammation through the Induction of Heme Oxygenase-1.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WILLIAM DURANTE其他文献

WILLIAM DURANTE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WILLIAM DURANTE', 18)}}的其他基金

Glutaminase in Arterial Injury and Disease
谷氨酰胺酶在动脉损伤和疾病中的作用
  • 批准号:
    10473678
  • 财政年份:
    2021
  • 资助金额:
    $ 39.07万
  • 项目类别:
Glutaminase in Arterial Injury and Disease
谷氨酰胺酶在动脉损伤和疾病中的作用
  • 批准号:
    10209076
  • 财政年份:
    2021
  • 资助金额:
    $ 39.07万
  • 项目类别:
ARGINASE AND ARTERIAL INJURY
精氨酸酶和动脉损伤
  • 批准号:
    6926566
  • 财政年份:
    2005
  • 资助金额:
    $ 39.07万
  • 项目类别:
ARGINASE AND ARTERIAL INJURY
精氨酸酶和动脉损伤
  • 批准号:
    7188644
  • 财政年份:
    2005
  • 资助金额:
    $ 39.07万
  • 项目类别:
ARGINASE AND ARTERIAL INJURY
精氨酸酶和动脉损伤
  • 批准号:
    7576180
  • 财政年份:
    2005
  • 资助金额:
    $ 39.07万
  • 项目类别:
ARGINASE AND ARTERIAL INJURY
精氨酸酶和动脉损伤
  • 批准号:
    7385019
  • 财政年份:
    2005
  • 资助金额:
    $ 39.07万
  • 项目类别:
ARGINASE AND ARTERIAL INJURY
精氨酸酶和动脉损伤
  • 批准号:
    7039211
  • 财政年份:
    2005
  • 资助金额:
    $ 39.07万
  • 项目类别:
CARBON MONOXIDE AND VASCULAR SMOOTH MUSCLE CELL FUNCTION
一氧化碳与血管平滑肌细胞功能
  • 批准号:
    7025793
  • 财政年份:
    1998
  • 资助金额:
    $ 39.07万
  • 项目类别:
CARBON MONOXIDE AND VASCULAR SMOOTH MUSCLE CELL FUNCTION
一氧化碳与血管平滑肌细胞功能
  • 批准号:
    2759125
  • 财政年份:
    1998
  • 资助金额:
    $ 39.07万
  • 项目类别:
CARBON MONOXIDE AND VASCULAR SMOOTH MUSCLE CELL FUNCTION
一氧化碳与血管平滑肌细胞功能
  • 批准号:
    6861701
  • 财政年份:
    1998
  • 资助金额:
    $ 39.07万
  • 项目类别:

相似国自然基金

SIRT5/ammonia信号通路介导适应性自噬在急性心肌梗死中的作用及其机制研究
  • 批准号:
    81900312
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
  • 批准号:
    10099896
  • 财政年份:
    2024
  • 资助金额:
    $ 39.07万
  • 项目类别:
    Collaborative R&D
STTR Phase I: Microwave-Enhanced Modular Ammonia Synthesis
STTR 第一阶段:微波增强模块化氨合成
  • 批准号:
    2335104
  • 财政年份:
    2024
  • 资助金额:
    $ 39.07万
  • 项目类别:
    Standard Grant
ENTICE: Enhanced Ammonia Cracking to Improve Engine Combustion and Emissions
ENTICE:增强氨裂解以改善发动机燃烧和排放
  • 批准号:
    10096979
  • 财政年份:
    2024
  • 资助金额:
    $ 39.07万
  • 项目类别:
    Collaborative R&D
Development of in situ ammonia capture for enhanced catalytic ammonia synthesis
开发用于增强催化氨合成的原位氨捕获
  • 批准号:
    24K17765
  • 财政年份:
    2024
  • 资助金额:
    $ 39.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EAGER: Enhancement of Ammonia combustion by spatiotemporal control of plasma kinetics
EAGER:通过等离子体动力学的时空控制增强氨燃烧
  • 批准号:
    2337461
  • 财政年份:
    2024
  • 资助金额:
    $ 39.07万
  • 项目类别:
    Standard Grant
Manufacturing conductive oxides as catalyst support for energy efficient production of hydrogen and ammonia
制造导电氧化物作为氢和氨节能生产的催化剂载体
  • 批准号:
    2904783
  • 财政年份:
    2024
  • 资助金额:
    $ 39.07万
  • 项目类别:
    Studentship
Novel High-Efficiency Ammonia engine Technology for Heavy Duty marine applications (HEAT-HD)
适用于重型船舶应用的新型高效氨发动机技术 (HEAT-HD)
  • 批准号:
    10096638
  • 财政年份:
    2024
  • 资助金额:
    $ 39.07万
  • 项目类别:
    Collaborative R&D
Three-dimensional solar-energy-driven hydrogen generation from ammonia
三维太阳能驱动的氨制氢
  • 批准号:
    DP240102787
  • 财政年份:
    2024
  • 资助金额:
    $ 39.07万
  • 项目类别:
    Discovery Projects
Accurate Determination of Branching Fractions in Ammonia Combustion
氨燃烧中支化分数的准确测定
  • 批准号:
    2329341
  • 财政年份:
    2024
  • 资助金额:
    $ 39.07万
  • 项目类别:
    Standard Grant
High-productivity ammonia electrosynthesis
高产氨电合成
  • 批准号:
    LP210301321
  • 财政年份:
    2023
  • 资助金额:
    $ 39.07万
  • 项目类别:
    Linkage Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了