Computation and Informatics in Biology and Medicine
生物学和医学中的计算和信息学
基本信息
- 批准号:10630324
- 负责人:
- 金额:$ 44.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsBiologyClinical ResearchCollaborationsCountryData ScienceDevelopmentDisciplineEcosystemEnsureEthicsFacultyFoundationsFundingGrantHIV InfectionsHealthHumanInformaticsInterdisciplinary StudyMedicineMentorshipMethodsMinority RecruitmentNational Institute of Allergy and Infectious DiseasePositioning AttributeReproducibilityResearchResearch InstituteResearch PersonnelResearch Project GrantsScientistSeriesSolidTrainingTraining ProgramsUnderrepresented MinorityUniversitiesWisconsinbiomedical informaticscareercomputer scienceexperiencegraduate studentimprovedinsightmeetingsnext generationpatient populationpre-doctoralprogramsrecruitresponsible research conductstatisticssuccess
项目摘要
Project Summary/Abstract
The University of Wisconsin’s (UW) Computation and Informatics in Biology and Medicine (CIBM) training
program is proposing to continue training the next generation of scientists with deep and broad expertise in
biomedical informatics and data science. We will continue our collaboration with the Marshfield Clinical
Research Institute (MCRI) as a partner in the training grant, and we will enable our trainees to develop their
expertise and establish the foundations of their careers within a vibrant ecosystem of biomedical and data
science research at UW and MCRI.
We will continue our focus on providing trainees with (1) a strong algorithmic and quantitative foundation from
computer science and statistics, (2) a broad understanding of the key biomedical informatics and data science
methods and challenges, and (3) a solid understanding of the biomedical contexts, spanning the spectrum
from molecules to populations of patients, in which methods from informatics can be applied to gain insight and
advance human health.
Key components of our program include (1) a core set of courses in biomedical informatics and data science,
(2) a broad set of supporting electives, (3) a weekly seminar series, (4) an annual retreat, (5) rigorous training
in ethics and the responsible conduct of research, (6) rigorous training in methods for ensuring reproducibility,
(7) an emphasis on recruiting a diverse pool of trainees, (8) trans-disciplinary co-mentorship, and (9) annual
progress meetings with trainees.
We have demonstrated strong success in recruiting and training graduate students. This is evidenced by the
number of new faculty and other successful researchers we have produced, the development of new externally
funded multi-disciplinary research projects, and our track record in underrepresented minority recruitment and
placement. We are asking for 10 predoctoral positions for our standard tracks, 2 additional NIAID-supported
predoctoral positions for research in biomedical informatics and data science addressing HIV infection, and 4
short-term trainee positions.
The CIBM program is well positioned to serve the country with highly trained researchers who have significant
expertise and practical experience in biomedical informatics and data science, the foundational disciplines of
computer science and statistics, and the biomedical contexts in which these methods can be applied to
advance biology and improve human health.
项目摘要/摘要
威斯康星大学(UW)生物与医学计算与信息学(CIBM)培训
计划建议继续培训具有深厚和广泛专业知识的下一代科学家
生物医学信息学和数据科学。我们将继续与马什菲尔德诊所合作
作为培训补助金的合作伙伴,我们将使我们的学员能够发展他们的
专业知识,并在充满活力的生物医学和数据生态系统中奠定其职业生涯的基础
威斯康星大学和MCRI的科学研究。
我们将继续专注于为学员提供(1)强大的算法和量化基础,从
计算机科学和统计学,(2)对关键的生物医学信息学和数据科学的广泛理解
方法和挑战,以及(3)对生物医学背景的扎实理解,跨越光谱
从分子到患者群体,其中可以应用信息学的方法来获得洞察力和
促进人类健康。
我们计划的主要组成部分包括(1)生物医学信息学和数据科学的核心课程,
(2)广泛的辅助性选修课;(3)每周系列研讨会;(4)年度静修;(5)严格训练
在道德和负责任的研究方面,(6)确保可再生性的方法方面的严格培训;
(7)强调招募不同的受训者;(8)跨学科共同指导;(9)年度
与实习生的进展会议。
我们在招收和培养研究生方面取得了巨大的成功。这一点从以下方面得到了证明
我们已经产生了许多新的教职员工和其他成功的研究人员,开发了新的外部
资助多学科研究项目,以及我们在招聘人数不足的少数族裔和
放置。我们正在为我们的标准跟踪要求10个博士前职位,另外2个由NIAID支持的职位
关于艾滋病毒感染的生物医学信息学和数据科学研究的博士前职位,以及4
短期实习生职位。
CIBM项目处于有利地位,可以为国家服务,拥有训练有素的研究人员,他们具有重要的
在生物医学信息学和数据科学方面的专业知识和实践经验,
计算机科学和统计学,以及这些方法可以应用于的生物医学背景
推进生物学,改善人类健康。
项目成果
期刊论文数量(240)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of spliceosome dynamics by maximum likelihood fitting of dwell time distributions
通过驻留时间分布的最大似然拟合分析剪接体动力学
- DOI:10.1016/j.ymeth.2018.11.014
- 发表时间:2019
- 期刊:
- 影响因子:4.8
- 作者:Kaur, Harpreet;Jamalidinan, Fatemehsadat;Condon, Samson G.F.;Senes, Alessandro;Hoskins, Aaron A.
- 通讯作者:Hoskins, Aaron A.
The Cytokinin Oxidase/Dehydrogenase CKX1 Is a Membrane-Bound Protein Requiring Homooligomerization in the Endoplasmic Reticulum for Its Cellular Activity1
- DOI:10.1104/pp.17.00925
- 发表时间:2018-01
- 期刊:
- 影响因子:7.4
- 作者:Michaela Niemann;H. Weber;Tomáš Hluska;Georgeta Leonte;S. Anderson;O. Novák;A. Senes;T. Werner
- 通讯作者:Michaela Niemann;H. Weber;Tomáš Hluska;Georgeta Leonte;S. Anderson;O. Novák;A. Senes;T. Werner
A predictive modeling approach for cell line-specific long-range regulatory interactions.
- DOI:10.1093/nar/gkv865
- 发表时间:2015-10-15
- 期刊:
- 影响因子:14.9
- 作者:Roy S;Siahpirani AF;Chasman D;Knaack S;Ay F;Stewart R;Wilson M;Sridharan R
- 通讯作者:Sridharan R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark W. Craven其他文献
Learning to predict reading frames in E. coli DNA sequences
学习预测大肠杆菌 DNA 序列中的阅读框
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
Mark W. Craven;J. Shavlik - 通讯作者:
J. Shavlik
Learning to Extract Relations from MEDLINE
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Mark W. Craven - 通讯作者:
Mark W. Craven
Relational Learning
关系学习
- DOI:
10.1007/springerreference_179431 - 发表时间:
2003 - 期刊:
- 影响因子:6.3
- 作者:
Mark W. Craven;Jude W. Shavlik - 通讯作者:
Jude W. Shavlik
Constructive Induction in Knowledge-Based Neural Networks
基于知识的神经网络中的构造归纳法
- DOI:
10.1016/b978-1-55860-200-7.50046-5 - 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
G. Towell;Mark W. Craven;J. Shavlik - 通讯作者:
J. Shavlik
Using Multiple Levels of Learning and Diverse Evidence to Uncover Coordinately Controlled Genes
利用多层次的学习和多样化的证据来发现协调控制的基因
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Mark W. Craven;David Page;J. Shavlik;Joseph Bockhorst;J. Glasner - 通讯作者:
J. Glasner
Mark W. Craven的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark W. Craven', 18)}}的其他基金
Linking Variants to Multi-scale Phenotypes via a Synthesis of Subnetwork Inference and Deep Learning
通过子网推理和深度学习的综合将变异与多尺度表型联系起来
- 批准号:
10627971 - 财政年份:2021
- 资助金额:
$ 44.33万 - 项目类别:
Linking Variants to Multi-scale Phenotypes via a Synthesis of Subnetwork Inference and Deep Learning
通过子网推理和深度学习的综合将变异与多尺度表型联系起来
- 批准号:
10297205 - 财政年份:2021
- 资助金额:
$ 44.33万 - 项目类别:
The Center for Predictive Computational Phenotyping-1 Overall
预测计算表型中心-1 总体
- 批准号:
9056632 - 财政年份:2014
- 资助金额:
$ 44.33万 - 项目类别:
The Center for Predictive Computational Phenotyping-1 Overall
预测计算表型中心-1 总体
- 批准号:
9270103 - 财政年份:2014
- 资助金额:
$ 44.33万 - 项目类别:
The Center for Predictive Computational Phenotyping-1 Overall
预测计算表型中心-1 总体
- 批准号:
8774800 - 财政年份:2014
- 资助金额:
$ 44.33万 - 项目类别:
The Center for Predictive Computational Phenotyping-1 Overall
预测计算表型中心-1 总体
- 批准号:
9266344 - 财政年份:2014
- 资助金额:
$ 44.33万 - 项目类别:
The Center for Predictive Computational Phenotyping-1 Overall
预测计算表型中心-1 总体
- 批准号:
8935748 - 财政年份:2014
- 资助金额:
$ 44.33万 - 项目类别:
Computation and Informatics in Biology and Medicine
生物学和医学中的计算和信息学
- 批准号:
10405951 - 财政年份:2002
- 资助金额:
$ 44.33万 - 项目类别:
Research Training for Computation and Informatics in Biology and Medicine
生物学和医学计算和信息学研究培训
- 批准号:
8094375 - 财政年份:2002
- 资助金额:
$ 44.33万 - 项目类别:
Computation and Informatics in Biology and Medicine
生物学和医学中的计算和信息学
- 批准号:
8862531 - 财政年份:2002
- 资助金额:
$ 44.33万 - 项目类别:
相似海外基金
REU Site: Algorithms and Optimization for Sustainability and Biology
REU 网站:可持续性和生物学的算法和优化
- 批准号:
2243010 - 财政年份:2023
- 资助金额:
$ 44.33万 - 项目类别:
Standard Grant
Multi-resolution Molecular Dynamics Algorithms for Computational Biology
计算生物学的多分辨率分子动力学算法
- 批准号:
EP/V047469/1 - 财政年份:2021
- 资助金额:
$ 44.33万 - 项目类别:
Research Grant
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2020
- 资助金额:
$ 44.33万 - 项目类别:
Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2019
- 资助金额:
$ 44.33万 - 项目类别:
Discovery Grants Program - Individual
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2018
- 资助金额:
$ 44.33万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning Algorithms for Actionable Knowledge Discovery in Synthetic Biology
合成生物学中可操作知识发现的机器学习算法
- 批准号:
2132169 - 财政年份:2018
- 资助金额:
$ 44.33万 - 项目类别:
Studentship
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
- 批准号:
1704552 - 财政年份:2017
- 资助金额:
$ 44.33万 - 项目类别:
Standard Grant
Developing novel machine learning algorithms for network biology
为网络生物学开发新颖的机器学习算法
- 批准号:
RGPIN-2015-06751 - 财政年份:2017
- 资助金额:
$ 44.33万 - 项目类别:
Discovery Grants Program - Individual
Workshop on Future Directions for Algorithms in Biology
生物学算法未来方向研讨会
- 批准号:
1748493 - 财政年份:2017
- 资助金额:
$ 44.33万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Sequential and Parallel Algorithms for Approximate Sequence Matching with Applications to Computational Biology
AF:媒介:协作研究:近似序列匹配的顺序和并行算法及其在计算生物学中的应用
- 批准号:
1703489 - 财政年份:2017
- 资助金额:
$ 44.33万 - 项目类别:
Standard Grant