Linking Variants to Multi-scale Phenotypes via a Synthesis of Subnetwork Inference and Deep Learning

通过子网推理和深度学习的综合将变异与多尺度表型联系起来

基本信息

  • 批准号:
    10627971
  • 负责人:
  • 金额:
    $ 65.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary The ability to accurately predict the effect of genetic variation on phenotypes at multiple scales would radically transform our ability to apply genomic technologies in order to understand human health and disease. This predictive ability would significantly improve the effectiveness of a broad spectrum of genomic analyses ranging from genome-wide association studies for common diseases to diagnostic odysseys searching for genetic causes of rare diseases. To address this challenge, we propose to develop a trainable approach for predicting the phenotypic impact of genetic variants. This approach will support predictions for a broad range of genetic variations, phenotypes, and biological contexts. It will incorporate and exploit mechanistic knowledge of pathways where available, but augment this pathway knowledge with learned models where it is not. This approach will consist of a synthesis of (i) methods that link genomic variants to their effect on expression or function of individual gene products, (ii) methods that link those relationships into the subnetworks involved in cellular responses of interest, (iii) machine-learning approaches that infer models pertaining to a variety of genotype-phenotype relations from large training sets. We will also develop and apply active learning algorithms to identify the most informative experiments for subsequent analysis by IGVF Consortium. Additionally, we will develop and apply a statistical framework for elucidating genetic modifiers, through probabilistic, network-informed inference of common variants identified in GWAS that modify the impact of rare variants implicated in sequencing-based association studies. Throughout the project, we will work closely with other IGVF Centers to guide experimental data collection, benchmark methods from across Centers, and contribute to the variant-element-phenotype catalog which will have broad applications by the community.
项目摘要 在多个尺度上准确预测遗传变异对表型的影响的能力将从根本上 改变我们应用基因组技术的能力,以了解人类健康和疾病。这 预测能力将显著提高广谱基因组分析的有效性 从常见疾病的全基因组关联研究到寻找 罕见疾病的遗传原因。 为了应对这一挑战,我们建议开发一种可训练的方法来预测表型的影响, 基因变异这种方法将支持预测广泛的遗传变异,表型, 和生物学背景。它将整合并利用可用的途径机械知识,但 在没有学习模型的地方,用学习模型来增强这种途径知识。这一办法将包括一项综合报告, (i)将基因组变异与其对单个基因产物的表达或功能的影响联系起来的方法,(ii) 将这些关系链接到感兴趣的细胞反应中涉及的子网络的方法,(iii) 机器学习方法,其推断与各种基因型-表型关系有关的模型, 大型训练集。 我们还将开发和应用主动学习算法,以确定最翔实的实验, IGVF Consortium的后续分析。此外,我们将开发和应用统计框架, 阐明遗传修饰剂,通过概率,网络信息推理的共同变异确定 在GWAS中,其修改了基于测序关联研究中涉及的罕见变体的影响。 在整个项目中,我们将与其他IGVF中心密切合作,指导实验数据收集, 来自各中心的基准方法,并有助于变异元件表型目录, 被社会广泛应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark W. Craven其他文献

Learning to predict reading frames in E. coli DNA sequences
学习预测大肠杆菌 DNA 序列中的阅读框
Learning to Extract Relations from MEDLINE
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mark W. Craven
  • 通讯作者:
    Mark W. Craven
Relational Learning
关系学习
  • DOI:
    10.1007/springerreference_179431
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Mark W. Craven;Jude W. Shavlik
  • 通讯作者:
    Jude W. Shavlik
Constructive Induction in Knowledge-Based Neural Networks
基于知识的神经网络中的构造归纳法
  • DOI:
    10.1016/b978-1-55860-200-7.50046-5
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Towell;Mark W. Craven;J. Shavlik
  • 通讯作者:
    J. Shavlik
Using Multiple Levels of Learning and Diverse Evidence to Uncover Coordinately Controlled Genes
利用多层次的学习和多样化的证据来发现协调控制的基因

Mark W. Craven的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark W. Craven', 18)}}的其他基金

Linking Variants to Multi-scale Phenotypes via a Synthesis of Subnetwork Inference and Deep Learning
通过子网推理和深度学习的综合将变异与多尺度表型联系起来
  • 批准号:
    10297205
  • 财政年份:
    2021
  • 资助金额:
    $ 65.56万
  • 项目类别:
The Center for Predictive Computational Phenotyping-1 Overall
预测计算表型中心-1 总体
  • 批准号:
    9056632
  • 财政年份:
    2014
  • 资助金额:
    $ 65.56万
  • 项目类别:
The Center for Predictive Computational Phenotyping-1 Overall
预测计算表型中心-1 总体
  • 批准号:
    9270103
  • 财政年份:
    2014
  • 资助金额:
    $ 65.56万
  • 项目类别:
The Center for Predictive Computational Phenotyping-1 Overall
预测计算表型中心-1 总体
  • 批准号:
    8774800
  • 财政年份:
    2014
  • 资助金额:
    $ 65.56万
  • 项目类别:
The Center for Predictive Computational Phenotyping-1 Overall
预测计算表型中心-1 总体
  • 批准号:
    9266344
  • 财政年份:
    2014
  • 资助金额:
    $ 65.56万
  • 项目类别:
The Center for Predictive Computational Phenotyping-1 Overall
预测计算表型中心-1 总体
  • 批准号:
    8935748
  • 财政年份:
    2014
  • 资助金额:
    $ 65.56万
  • 项目类别:
Computation and Informatics in Biology and Medicine
生物学和医学中的计算和信息学
  • 批准号:
    10630324
  • 财政年份:
    2002
  • 资助金额:
    $ 65.56万
  • 项目类别:
Computation and Informatics in Biology and Medicine
生物学和医学中的计算和信息学
  • 批准号:
    10405951
  • 财政年份:
    2002
  • 资助金额:
    $ 65.56万
  • 项目类别:
Research Training for Computation and Informatics in Biology and Medicine
生物学和医学计算和信息学研究培训
  • 批准号:
    8094375
  • 财政年份:
    2002
  • 资助金额:
    $ 65.56万
  • 项目类别:
Computation and Informatics in Biology and Medicine
生物学和医学中的计算和信息学
  • 批准号:
    10200888
  • 财政年份:
    2002
  • 资助金额:
    $ 65.56万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 65.56万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 65.56万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.56万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.56万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 65.56万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.56万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 65.56万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 65.56万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 65.56万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.56万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了