Computational Speech Analysis in Alzheimer's Disease and Other Neurocognitive Disorders

阿尔茨海默病和其他神经认知障碍的计算语音分析

基本信息

  • 批准号:
    10630078
  • 负责人:
  • 金额:
    $ 18.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Abstract: Early and accurate diagnosis of neurocognitive disorders (NCDs) is critical for planning, treatment, and research referral, but demands time and expertise often unavailable to primary care providers. Speech and language are often impaired early in the disease course of several NCDs. Previous research has demonstrated the diagnostic potential of computer speech analysis (CSA), with differences between healthy controls and disorders such as mild cognitive impairment (MCI) and Alzheimer's disease. However, there are several additional steps that must be taken to make CSA a diagnostically viable screening tool. This proposal includes a career development plan providing the applicant with training, mentorship, and experience in the following areas in order to bring CSA techniques into clinical practice: 1) computational linguistics and paralinguistics, 2) longitudinal markers of disease, and 3) design of novel technology for dissemination. As part of this training, academic and professional skills, including ethics in research, will also be expanded. Uniquely qualified mentorship and advisory teams have been selected to ensure the success of the proposed training and research. The proposed study is a prospective, longitudinal, observational, cohort investigation of two distinct research groups. The first group is a highly selected and well-characterized research cohort of healthy control, Alzheimer's disease, and MCI subjects (Group A). In Group A, the performance and reproducibility of a machine learning algorithm will be improved to distinguish Alzheimer's disease and MCI from healthy controls using CSA. Multiple regression and voxel-based morphometry will be used to better understand what may drive group differences in CSA measures in Group A as well. Clinical applications of this algorithm will then be assessed in a clinic-based cohort of patients with different NCDs (Group B) in order reduce spectrum bias likely present in prior studies. As sub-aims in both groups, possible further improvement of the algorithmic outcomes with longitudinal CSA measures will also be examined. The overall objective is to develop intuitive, reliable and reproducible CSA-based clinical measures by correlating them with established neuropsychiatric and imaging markers, determining their efficacy in clinical populations, and determining how they change over time. As a result, this research will validate specific speech traits as useful diagnostic markers of neurocognitive disease and explain why those markers differ between patient groups, both of which are major steps towards the design of novel and easily implemented tools in the screening of NCDs such as Alzheimer's disease.
摘要: 神经认知障碍(NCDs)的早期和准确诊断对于计划、治疗和 研究转介,但需要时间和专业知识往往是初级保健提供者无法获得的。演讲和 在几种非传染性疾病的病程早期,语言经常受损。之前的研究已经证明 计算机语音分析(CSA)的诊断潜力及其在健康对照组和对照组之间的差异 轻度认知障碍(MCI)和阿尔茨海默病等疾病。然而,有几个 使CSA成为诊断可行的筛查工具必须采取的其他步骤。这项建议包括 职业发展计划,为申请人提供以下方面的培训、指导和经验 将CSA技术应用于临床的领域:1)计算语言学和副语言学,2) 疾病的纵向标志,以及3)新的传播技术的设计。作为这次培训的一部分, 学术和专业技能,包括研究中的道德,也将得到扩大。独一无二的资质 已经挑选了指导和咨询小组,以确保拟议的培训和 研究。 这项拟议的研究是一项前瞻性、纵向、观察性、队列调查,包括两项不同的研究 组。第一组是经过高度挑选并具有良好特征的健康对照研究队列, 阿尔茨海默病和MCI受试者(A组)。在A组中,一种 将改进机器学习算法以区分阿尔茨海默病和MCI与健康对照 使用CsA。多元回归和基于体素的形态测量将用于更好地理解 A组CSA指标的组间差异也有统计学意义。然后该算法的临床应用将被 在不同非传染性疾病患者(B组)的临床队列中进行评估,以减少频谱偏差 可能存在于先前的研究中。作为两组的子目标,可能进一步改进算法 还将检查纵向CSA措施的结果。总体目标是开发直观、 可靠和可重复性的基于CSA的临床测量,将它们与已建立的神经精神病学相关联 和成像标志物,确定它们在临床人群中的有效性,并确定它们是如何改变的 时间到了。因此,这项研究将验证特定的语音特征作为有用的诊断标记 并解释为什么这些标记物在患者组之间有所不同,这两组患者都是主要的 在阿尔茨海默氏症等非传染性疾病筛查中设计新的、易于实施的工具的步骤 疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Scott Pressman其他文献

Peter Scott Pressman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Scott Pressman', 18)}}的其他基金

Computational Speech Analysis in Alzheimer's Disease and Other Neurocognitive Disorders (Supplement)
阿尔茨海默病和其他神经认知障碍的计算语音分析(补充)
  • 批准号:
    10594271
  • 财政年份:
    2020
  • 资助金额:
    $ 18.37万
  • 项目类别:
Computational Speech Analysis in Alzheimer's Disease and Other Neurocognitive Disorders
阿尔茨海默病和其他神经认知障碍的计算语音分析
  • 批准号:
    9975566
  • 财政年份:
    2020
  • 资助金额:
    $ 18.37万
  • 项目类别:
Computational Speech Analysis in Alzheimer's Disease and Other Neurocognitive Disorders
阿尔茨海默病和其他神经认知障碍的计算语音分析
  • 批准号:
    10393556
  • 财政年份:
    2020
  • 资助金额:
    $ 18.37万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 18.37万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.37万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 18.37万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.37万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 18.37万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.37万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 18.37万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 18.37万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 18.37万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.37万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了