Advancing the design, analysis, and interpretation of acute respiratory distress syndrome trials using modern statistical tools
使用现代统计工具推进急性呼吸窘迫综合征试验的设计、分析和解释
基本信息
- 批准号:10633978
- 负责人:
- 金额:$ 77.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Respiratory Distress SyndromeAcute respiratory failureAddressAdrenal Cortex HormonesAdverse eventAdvocateAgonistBayesian MethodBayesian ModelingBeliefCOVID-19Cessation of lifeCharacteristicsClinicalClinical Practice GuidelineClinical effectivenessCognitiveComplexComputer softwareDataDetectionDiseaseEpidemiologyErgocalciferolsFormulationFundingFutureHeterogeneityHospital MortalityIndividualInternationalInterventionIntuitionInvestigationKnowledgeLearningLength of StayLiquid substanceMeta-AnalysisMethodologyMethodsModernizationModificationMorbidity - disease rateNational Heart, Lung, and Blood InstituteNeuromuscular Blocking AgentsOutcomeOutputPatientsPneumoniaProbabilityProne PositionPublishingRecommendationResearchResearch PersonnelRespiratory FailureSepsisSocietiesSpecific qualifier valueStandardizationStatistical MethodsSubgroupSurvivorsSyndromeTechniquesTestingTidal VolumeTreatment EfficacyUnited States National Institutes of HealthVariantVentilatorVitamin DWorkadjudicationclinical efficacyclinical trial enrollmentclinically relevantcloud basedcostdesignevidence basefallsimprovedimproved outcomeinnovationinsightmachine learning methodmortalitynovelnovel strategiesparticipant enrollmentpatient subsetspreventpsychosocialrandomized, clinical trialsregression treesrespiratory virustooltreatment effecttreatment responsetrial designventilationweb-based tool
项目摘要
PROJECT SUMMARY/ABSTRACT
Acute respiratory distress syndrome (ARDS) is a common and devastating cause of acute respiratory failure.
There are 200,000 annual ARDS cases in the U.S. (2.5-5 million globally), which account for 60,000 deaths
and enormous physical, cognitive, and psychosocial morbidity among survivors. Yet, despite more than 200
randomized clinical trials (RCTs), only two interventions – low-tidal-volume ventilation and prone positioning –
have definitively improved outcomes using a traditional frequentist, null hypothesis, p-value-based trial design
and analysis. The research team contends that assessing data in this framework may overlook informative trial
data and delay or thwart the identification of promising therapies, especially when p-values fall just short of the
0.05 threshold, which has occurred in several major ARDS trials. As an alternative methodological approach to
maximize the clinical insight gained from RCTs, the team will reanalyze 29 international and NHLBI-funded
ARDS RCTs that enrolled more than 15,000 individuals using Bayesian causal inference and machine learning
methods they have developed and validated. Most therapies they will examine are either low-cost or easily
implemented practices and thus have the potential for high impact (e.g., ventilator settings, fluid management,
corticosteroids, statins, beta-agonists, vitamin D). In Aim 1, instead of using statistical significance, they will
quantify the probability of a beneficial treatment effect and its probable magnitude. That is, instead of using a
pre-specified p-value to determine whether an intervention has at least the hypothesized mortality benefit, they
will derive the probability that a given therapy is associated with clinically relevant absolute mortality reductions
of at least 2%, 4%, and 6%. They will examine each intervention with noninformative Bayesian ‘priors’ and then
with standardized and meta-analysis-derived priors to reduce subjectivity and interrogate clinical efficacy
across the spectrum of harm and benefit possibilities. In Aim 2, they will use Bayesian Additive Regression
Trees (BART) formulations they developed to understand which ARDS patient types are most likely to benefit
from, or be harmed by, a therapy, i.e., so-called ‘heterogeneity of treatment effect’ (HTE). Unlike prior HTE
research in ARDS, their approach does not focus on one-by-one, binary splits of characteristics but rather can
identify complex, multivariable, nonlinear treatment effect modification. Aim 2a will focus on mortality and
adverse events. Aim 2b will apply a novel BART variation to identify HTE in outcomes such as ventilator
duration or hospital stay whose observation is truncated by death. By estimating causal effects on these
outcomes among always-survivors, their new method avoids biases associated with prior approaches,
enabling accurate identification of clinically meaningful subgroups. Aim 3 focuses on developing and
disseminating free, cloud-based software to support future ARDS trials. This work promises to improve the
value of the knowledge gained from past and future ARDS RCTs by identifying truly beneficial treatments and
informing how these therapies can be individually tailored for this high-mortality, high-morbidity syndrome.
项目摘要/摘要
急性呼吸窘迫综合征(ARDS)是导致急性呼吸衰竭的一种常见且具有破坏性的原因。
美国每年有20万例急性呼吸窘迫综合征(ARDS)病例(全球250-500万例),其中6万人死亡
以及幸存者中巨大的身体、认知和心理社会发病率。然而,尽管有200多个
随机临床试验(RCT),只有两种干预措施--低潮气量通气法和俯卧位--
使用传统的基于频率、零假设、基于p值的试验设计,结果确实得到了改善
和分析。研究小组争辩说,这个框架中的评估数据可能会忽视信息丰富的试验
数据和延迟或阻碍了有希望的疗法的识别,特别是当p值略低于
0.05的阈值,这已经在几个主要的ARDS试验中发生。作为一种替代的方法论方法
最大化从随机对照试验中获得的临床洞察力,该团队将重新分析29个国际和NHLBI资助的项目
使用贝叶斯因果推理和机器学习招募了15,000多人的ARDS随机对照试验
他们开发和验证的方法。他们将检查的大多数疗法要么成本低,要么很容易
所实施的实践因此具有高影响的潜力(例如,呼吸机设置,流体管理,
皮质类固醇、他汀类药物、β-激动剂、维生素D)。在目标1中,他们将不使用统计意义,而是
量化有益的治疗效果的概率及其可能的大小。也就是说,不是使用
预先指定的p值以确定干预是否至少具有假设的死亡率收益,它们
将得出一种特定疗法与临床相关的绝对死亡率降低相关的概率
至少2%、4%和6%。他们将用非信息性的贝叶斯“先验”来检查每一项干预,然后
使用标准化和Meta分析派生的先验,以减少主观性并询问临床疗效
各种危害和益处的可能性。在目标2中,他们将使用贝叶斯加法回归
他们开发了Trees(BART)公式,以了解哪些ARDS患者类型最有可能受益
来自治疗或被治疗伤害,即所谓的治疗效果的异质性(HTE)。与以前的HTE不同
在ARDS的研究中,他们的方法不关注一个接一个的二进制特征分裂,而是可以
识别复杂、多变量、非线性的治疗效果修正。目标2a将重点关注死亡率和
不良事件。Aim 2b将应用一种新的BART变异来确定呼吸机等结局中的HTE
观察因死亡而被截断的时间或住院时间。通过估计这些因素的因果影响
在总是幸存者的结果中,他们的新方法避免了与先前方法相关的偏见,
能够准确识别具有临床意义的亚组。目标3侧重于开发和
传播免费的基于云的软件,以支持未来的ARDS试验。这项工作有望改善
从过去和未来ARDS随机对照试验中获得的知识的价值,通过确定真正有益的治疗和
告知如何为这种高死亡率、高发病率的综合征量身定做这些疗法。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of sceptical priors on the performance of adaptive clinical trials with binary outcomes.
- DOI:10.1002/pst.2387
- 发表时间:2024-03-29
- 期刊:
- 影响因子:1.5
- 作者:Granholm,Anders;Lange,Theis;Kaas-Hansen,Benjamin Skov
- 通讯作者:Kaas-Hansen,Benjamin Skov
Reply to Heitjan's commentary.
回复 Heitjan 的评论。
- DOI:10.1177/17407745241243311
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Fay,MichaelP;Li,Fan
- 通讯作者:Li,Fan
Causal interpretation of the hazard ratio in randomized clinical trials.
随机临床试验中风险比的因果解释。
- DOI:10.1177/17407745241243308
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Fay,MichaelP;Li,Fan
- 通讯作者:Li,Fan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Oscar Harhay其他文献
Michael Oscar Harhay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Oscar Harhay', 18)}}的其他基金
Phenotyping ARDS, Pneumonia, and Sepsis over time to elucidate shared and distinct trajectories ofillness and recovery
随着时间的推移对 ARDS、肺炎和脓毒症进行表型分析,以阐明共同和不同的疾病和康复轨迹
- 批准号:
10649194 - 财政年份:2023
- 资助金额:
$ 77.97万 - 项目类别:
Improving the measurement and analysis of long-term, patient-centered outcomes following acute respiratory failure
改善急性呼吸衰竭后以患者为中心的长期结果的测量和分析
- 批准号:
10370292 - 财政年份:2018
- 资助金额:
$ 77.97万 - 项目类别:
Improving the measurement and analysis of long-term, patient-centered outcomes following acute respiratory failure
改善急性呼吸衰竭后以患者为中心的长期结果的测量和分析
- 批准号:
10064003 - 财政年份:2018
- 资助金额:
$ 77.97万 - 项目类别:
Methods to improve the detection of treatment effects in ARDS clinical trials
改善 ARDS 临床试验中治疗效果检测的方法
- 批准号:
8907567 - 财政年份:2015
- 资助金额:
$ 77.97万 - 项目类别:
相似海外基金
Novel Digital Methods to Evaluate Functional and Pulmonary Outcomes following Pediatric Acute Respiratory Failure
评估小儿急性呼吸衰竭后功能和肺部结果的新型数字方法
- 批准号:
10724042 - 财政年份:2023
- 资助金额:
$ 77.97万 - 项目类别:
Optimizing Time-Limited Trials of Mechanical Ventilation in Acute Respiratory Failure: A Mixed Methods Observational Study
优化急性呼吸衰竭机械通气的限时试验:混合方法观察研究
- 批准号:
10633823 - 财政年份:2023
- 资助金额:
$ 77.97万 - 项目类别:
Use of Inter-Hospital Transfer Services in Critical Illness and Acute Respiratory Failure
在危重疾病和急性呼吸衰竭中使用医院间转运服务
- 批准号:
10739060 - 财政年份:2023
- 资助金额:
$ 77.97万 - 项目类别:
Strengthening implementation science in Acute Respiratory Failure using multilevel analysis of existing data
利用现有数据的多级分析加强急性呼吸衰竭的实施科学
- 批准号:
10731311 - 财政年份:2023
- 资助金额:
$ 77.97万 - 项目类别:
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
- 批准号:
10734357 - 财政年份:2023
- 资助金额:
$ 77.97万 - 项目类别:
Health expectations after acute respiratory failure in survivor-care partner dyads
幸存者护理伙伴二人组急性呼吸衰竭后的健康期望
- 批准号:
10732929 - 财政年份:2023
- 资助金额:
$ 77.97万 - 项目类别:
Temporal trends in quality indicators of palliative care for patients with chronic illness hospitalized with acute respiratory failure
因急性呼吸衰竭住院的慢性病患者姑息治疗质量指标的时间趋势
- 批准号:
10622756 - 财政年份:2023
- 资助金额:
$ 77.97万 - 项目类别:
Association of patient characteristics and antibiotic timing with the development of acute respiratory failure in hospital-acquired sepsis
患者特征和抗生素使用时机与医院获得性脓毒症急性呼吸衰竭发展的关系
- 批准号:
10313769 - 财政年份:2022
- 资助金额:
$ 77.97万 - 项目类别:
Financial Hardship among Patients with Acute Respiratory Failure and their Family Member Caregivers: Understanding the Impact on Patient- and Family- Centered Outcomes
急性呼吸衰竭患者及其家庭成员护理人员的经济困难:了解对以患者和家庭为中心的结果的影响
- 批准号:
10413457 - 财政年份:2022
- 资助金额:
$ 77.97万 - 项目类别: