Robust detection of atrophy over short intervals in AD and FTLD
在 AD 和 FTLD 中短时间间隔内对萎缩进行稳健检测
基本信息
- 批准号:10633960
- 负责人:
- 金额:$ 83.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlzheimer&aposs DiseaseAmyloidAnatomyAtrophicBiologicalBiological MarkersBrainBrain regionBrain scanCessation of lifeClinicalClinical TrialsClinical Trials DesignCross-Over TrialsDataDementiaDetectionDiagnosisDiseaseEarly Onset Alzheimer DiseaseFamilyFoundationsFrontotemporal Lobar DegenerationsGoalsIndividualInvestigationKnowledgeLobarLocationMRI ScansMagnetic Resonance ImagingMapsMeasurableMeasurementMeasuresMethodologyMethodsMonitorMulticenter StudiesNatural HistoryNerve DegenerationNeurodegenerative DisordersOutcomeParticipantPatientsPersonsPositron-Emission TomographyPublic HealthResearchRunningSample SizeSamplingScanningSiteStructureSyndromeTechniquesTechnologyTherapeutic TrialsThickTimeValidity and ReliabilityWorkbehavioral variant frontotemporal dementiabrain cellbrain magnetic resonance imagingbrain sizebrain volumecerebral atrophyearly onsetfluorodeoxyglucose positron emission tomographyimaging facilitiesimprovedin vivointerestneurodegenerative dementianovelnovel strategiesphase III trialregional atrophyscale upstandard measuretau Proteinstime intervaltrial design
项目摘要
PROJECT SUMMARY
Alzheimer’s disease, Frontotemporal Lobar Degeneration, and other diseases that lead to dementia are one of
the 21st century’s major public health problems. This family of neurodegenerative diseases involves the
disruption of functional brain circuits and ultimately the death of brain cells. In living people, the standard
measure of neurodegeneration is derived from brain MRI scans, which can quantitatively measure the location
and amount of atrophy. This is traditionally done, and continues to be done in many studies, over intervals of
one year, with one or two scans collected one year apart, estimating annualized rates of brain atrophy. In some
clinical trials, scans may be collected more frequently, but in one recent failed phase III trial aiming to slow
neurodegeneration they were collected 80 weeks apart. The goal of this work is to demonstrate that new
methods we and our colleagues have developed are able to improve the sensitivity to detect atrophy within
individuals over short intervals of time, down to as little as 3 months. This is done by making a large number of
extremely fast, highly precise repeated measurements at each time point for each individual. We aim to
demonstrate the reliability and validity of these new MRI measures of neurodegeneration against traditional
MRI measures and externally validated against PET and clinical measures in individuals with Early-onset
Alzheimer’s disease or behavioral variant Frontotemporal Dementia. If successful, this work could revolutionize
the field and open the door to a new means to track neurodegeneration, potentially greatly facilitating clinical
trials.
项目总结
阿尔茨海默病、额颞叶变性和其他导致痴呆症的疾病是
21世纪的主要公共卫生问题。这一神经退行性疾病家族涉及
大脑功能回路的中断,最终导致脑细胞死亡。在生活的人中,标准
神经变性的测量是从脑部MRI扫描中得出的,它可以定量地测量位置
以及萎缩的程度。这在传统上是这样做的,并在许多研究中继续这样做,时间间隔为
一年,每隔一年收集一到两次扫描,估计大脑萎缩的年化比率。在一些
临床试验,扫描可能会更频繁地收集,但在最近一次失败的III期试验中,旨在减缓
神经退行性变他们是相隔80周采集的。这项工作的目标是展示新的
我们和同事开发的方法能够提高检测脑内萎缩的敏感度
个体在短的时间间隔上,下降到短到3个月。这是通过制作大量的
为每个个体在每个时间点进行极快、高精度的重复测量。我们的目标是
证明这些新的MRI神经退行性变测量方法的可靠性和有效性
早发性患者的MRI测量及与PET和临床测量对照的外部验证
阿尔茨海默病或行为变异型额颞叶痴呆。如果成功,这项工作可能会带来革命性的
这一领域为追踪神经变性打开了一扇新的大门,潜在地极大地方便了临床
审判。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRADFORD C DICKERSON其他文献
BRADFORD C DICKERSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRADFORD C DICKERSON', 18)}}的其他基金
ADRC Consortium for Clarity in ADRD Research Through Imaging
ADRC 联盟通过成像来明确 ADRD 研究
- 批准号:
10803806 - 财政年份:2023
- 资助金额:
$ 83.47万 - 项目类别:
Toward Personalized Prognosis and Outcomes in Primary Progressive Aphasia
原发性进行性失语症的个性化预后和结果
- 批准号:
10634041 - 财政年份:2023
- 资助金额:
$ 83.47万 - 项目类别:
Neuromodulation of brain network function in preclinical and prodromal Alzheimer's Disease
阿尔茨海默病临床前和前驱期脑网络功能的神经调节
- 批准号:
10589289 - 财政年份:2023
- 资助金额:
$ 83.47万 - 项目类别:
Computational psycholinguistic analysis of speech samples in PPA and AD and FTD
PPA、AD 和 FTD 中语音样本的计算心理语言学分析
- 批准号:
10373191 - 财政年份:2022
- 资助金额:
$ 83.47万 - 项目类别:
Computational psycholinguistic analysis of speech samples in PPA and AD and FTD
PPA、AD 和 FTD 中语音样本的计算心理语言学分析
- 批准号:
10563169 - 财政年份:2022
- 资助金额:
$ 83.47万 - 项目类别:
Characterizing sleep brain dynamics associated with Alzheimer's disease pathology and progression in humans using EEG source localization and PET
使用 EEG 源定位和 PET 表征与人类阿尔茨海默病病理学和进展相关的睡眠大脑动力学
- 批准号:
10590969 - 财政年份:2022
- 资助金额:
$ 83.47万 - 项目类别:
Use of machine learning to quantify cognitive function in AD, FTD, and DLB
使用机器学习来量化 AD、FTD 和 DLB 中的认知功能
- 批准号:
10288487 - 财政年份:2021
- 资助金额:
$ 83.47万 - 项目类别:
Muli-scale Structural Imaging of Alzheimer's Disease Neuropathology and Neurodegeneration
阿尔茨海默病神经病理学和神经变性的多尺度结构成像
- 批准号:
10207104 - 财政年份:2021
- 资助金额:
$ 83.47万 - 项目类别:
Use of machine learning to quantify cognitive function in AD, FTD, and DLB
使用机器学习来量化 AD、FTD 和 DLB 中的认知功能
- 批准号:
10468302 - 财政年份:2021
- 资助金额:
$ 83.47万 - 项目类别: