Computational psycholinguistic analysis of speech samples in PPA and AD and FTD

PPA、AD 和 FTD 中语音样本的计算心理语言学分析

基本信息

  • 批准号:
    10563169
  • 负责人:
  • 金额:
    $ 23.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-04 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Abstract Primary Progressive Aphasia (PPA) is a clinical neurodegenerative syndrome characterized by abnormalities in language with initial relative sparing of other cognitive processes. The syndrome may result from several kinds of neuropathology, including Alzheimer's disease (AD) or Frontotemporal Lobar Degeneration (FTLD). The different neuropathological causes are associated with specific variants of the disease. Individuals with the non-fluent variant of PPA (nfvPPA) tend to show effortful speech and agrammatism, in some cases with motor speech dysfunction. Impairments in sentence repetition and lexical retrieval are exhibited by those with the logopenic variant of PPA (lvPPA). Difficulties in object naming and word comprehension are experienced in individuals with the semantic variant of PPA (svPPA). While widely used, the current system of classification is challenged by the occurrence of individuals with overlapping profiles of linguistic behavior and by an inconsistent alignment of linguistic profiles and patterns of cortical atrophy. In addition, some of these same linguistic or anatomic abnormalities can be seen in patients with non-PPA clinical phenotypes of AD or FTLD. That is, these PPA subtypes may represent one way of classifying a multidimensional spectrum of cognitive- behavioral anatomic abnormalities arising from a set of neurodegenerative pathologies; we need new ways of quantifying these abnormalities, and we need to consider alternative classification schemes. Here we introduce a new approach to accomplishing both of these possibilities. Recent developments in Natural Language Processing (NLP) and Machine Learning (ML) have now made possible the automated discovery and classification of linguistic features. Once established, these feature sets can be connected to distributions of cortical atrophy, thus enabling links between specific linguistic behavioral abnormalities and underlying neural networks. This approach to the analysis of PPA subtypes, and their contextualization with other clinical types of AD and FTLD, can be achieved through a sufficiently large number of language samples collected in ways that highlight both the production and comprehension aspects of the language system. In addition, such analyses require the use of the latest generation of artificial intelligence models, called transformer-networks. The result will be a new understanding of the PPA syndrome and the language network that it affects. In Aim 1, we will investigate the performance of an unsupervised artificial intelligence model for measuring and classifying language abnormalities in PPA patients. In Aim 2, we will investigate the how these models can be used to measure and classify language abnormalities in AD and FTD patients. In Aim 3, we will evaluate the reliability of these automated measures of language abnormalities in PPA, AD, and FTD. Through a finer-grained analysis of language in people with PPA and other forms of AD or FTLD, it should be possible to develop better understanding of the overlapping and dissociable features of these dementias, possibly leading to improved diagnostic classification and better prognostication.
摘要

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BRADFORD C DICKERSON其他文献

BRADFORD C DICKERSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BRADFORD C DICKERSON', 18)}}的其他基金

Robust detection of atrophy over short intervals in AD and FTLD
在 AD 和 FTLD 中短时间间隔内对萎缩进行稳健检测
  • 批准号:
    10633960
  • 财政年份:
    2023
  • 资助金额:
    $ 23.93万
  • 项目类别:
ADRC Consortium for Clarity in ADRD Research Through Imaging
ADRC 联盟通过成像来明确 ADRD 研究
  • 批准号:
    10803806
  • 财政年份:
    2023
  • 资助金额:
    $ 23.93万
  • 项目类别:
Toward Personalized Prognosis and Outcomes in Primary Progressive Aphasia
原发性进行性失语症的个性化预后和结果
  • 批准号:
    10634041
  • 财政年份:
    2023
  • 资助金额:
    $ 23.93万
  • 项目类别:
Neuromodulation of brain network function in preclinical and prodromal Alzheimer's Disease
阿尔茨海默病临床前和前驱期脑网络功能的神经调节
  • 批准号:
    10589289
  • 财政年份:
    2023
  • 资助金额:
    $ 23.93万
  • 项目类别:
Computational psycholinguistic analysis of speech samples in PPA and AD and FTD
PPA、AD 和 FTD 中语音样本的计算心理语言学分析
  • 批准号:
    10373191
  • 财政年份:
    2022
  • 资助金额:
    $ 23.93万
  • 项目类别:
Characterizing sleep brain dynamics associated with Alzheimer's disease pathology and progression in humans using EEG source localization and PET
使用 EEG 源定位和 PET 表征与人类阿尔茨海默病病理学和进展相关的睡眠大脑动力学
  • 批准号:
    10590969
  • 财政年份:
    2022
  • 资助金额:
    $ 23.93万
  • 项目类别:
Use of machine learning to quantify cognitive function in AD, FTD, and DLB
使用机器学习来量化 AD、FTD 和 DLB 中的认知功能
  • 批准号:
    10288487
  • 财政年份:
    2021
  • 资助金额:
    $ 23.93万
  • 项目类别:
Muli-scale Structural Imaging of Alzheimer's Disease Neuropathology and Neurodegeneration
阿尔茨海默病神经病理学和神经变性的多尺度结构成像
  • 批准号:
    10207104
  • 财政年份:
    2021
  • 资助金额:
    $ 23.93万
  • 项目类别:
Use of machine learning to quantify cognitive function in AD, FTD, and DLB
使用机器学习来量化 AD、FTD 和 DLB 中的认知功能
  • 批准号:
    10468302
  • 财政年份:
    2021
  • 资助金额:
    $ 23.93万
  • 项目类别:
Imaging Core
成像核心
  • 批准号:
    10620686
  • 财政年份:
    2019
  • 资助金额:
    $ 23.93万
  • 项目类别:

相似海外基金

Investigation of neuropsychological examination and speech-language activity for agrammatism in patients with dementia
痴呆患者语法错误的神经心理学检查和言语活动调查
  • 批准号:
    20K07979
  • 财政年份:
    2020
  • 资助金额:
    $ 23.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
COMPUTER BASED MAPPING THERAPY FOR AGRAMMATISM
基于计算机的语法映射疗法
  • 批准号:
    2127696
  • 财政年份:
    1995
  • 资助金额:
    $ 23.93万
  • 项目类别:
COMPUTER BASED MAPPING THERAPY FOR AGRAMMATISM
基于计算机的语法映射疗法
  • 批准号:
    2127697
  • 财政年份:
    1995
  • 资助金额:
    $ 23.93万
  • 项目类别:
COMPUTER BASED MAPPING THERAPY FOR AGRAMMATISM
基于计算机的语法映射疗法
  • 批准号:
    2430095
  • 财政年份:
    1995
  • 资助金额:
    $ 23.93万
  • 项目类别:
ACCESS TO ARGUMENT STRUCTURE IN AGRAMMATISM
访问语法中的论证结构
  • 批准号:
    2126661
  • 财政年份:
    1992
  • 资助金额:
    $ 23.93万
  • 项目类别:
ACCESS TO ARGUMENT STRUCTURE IN AGRAMMATISM
访问语法中的论证结构
  • 批准号:
    3461888
  • 财政年份:
    1992
  • 资助金额:
    $ 23.93万
  • 项目类别:
ACCESS TO ARGUMENT STRUCTURE IN AGRAMMATISM
访问语法中的论证结构
  • 批准号:
    2126660
  • 财政年份:
    1992
  • 资助金额:
    $ 23.93万
  • 项目类别:
ACCESS TO ARGUMENT STRUCTURE IN AGRAMMATISM
访问语法中的论证结构
  • 批准号:
    2126659
  • 财政年份:
    1992
  • 资助金额:
    $ 23.93万
  • 项目类别:
ACCESS TO ARGUMENT STRUCTURE IN AGRAMMATISM
访问语法中的论证结构
  • 批准号:
    3461887
  • 财政年份:
    1992
  • 资助金额:
    $ 23.93万
  • 项目类别:
Working Conference on the Cross-Language Study of Agrammatism - October 21-23, 1983
语法问题跨语言研究工作会议 - 1983 年 10 月 21-23 日
  • 批准号:
    8302459
  • 财政年份:
    1983
  • 资助金额:
    $ 23.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了