A Novel High-Intensity Iontophoresis-Based Antibiotic Delivery Device for Efficacious Eradication of Chronic Wound Biofilms
一种新型高强度离子电渗疗法抗生素输送装置,可有效根除慢性伤口生物膜
基本信息
- 批准号:10634602
- 负责人:
- 金额:$ 20.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-03 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAmputationAntibiotic ResistanceAntibioticsBacteriaBiologicalBiological ModelsCell Culture TechniquesCellsCharacteristicsChronicComputer AssistedDevice DesignsDevicesDiffusionDrug Delivery SystemsDrug resistanceElementsExtracellular MatrixFormulationGoalsGrowthHealthHealth Care CostsHistocompatibilityHourHumanHydrogelsIn VitroInfectionInflammatoryInflammatory ResponseIonsIontophoresisIschemiaMicrobial BiofilmsMissionModelingNational Institute of Arthritis, and Musculoskeletal, and Skin DiseasesNeedlesOutcomePatientsPersonsPhasePolymersProcessPublic HealthQuality of lifeRattusResearchSafetySkinSkin TissueTechnologyTemperatureTimeTissuesTopical applicationTreatment EfficacyVancomycinVancomycin ResistanceWound Infectionantibiotic designchronic woundcombatdesignextracellularhealingimprovedin vivoinventionmetabolic ratemethicillin resistant Staphylococcus aureusmortalitynanoparticlenon-healing woundsnovelpreventresistance genesimulationskin regenerationsmall moleculetherapeutically effectivewoundwound biofilmwound healing
项目摘要
PROJECT SUMMARY. In this study, we will develop a novel ion current-based iontophoresis device that can
safely apply high intensity currents to deliver a therapeutically effective concentration of antibiotics into biofilms
within a short period of time to achieve efficacious eradication of chronic wound biofilm infections. Chronic
wounds are currently affecting more than 6 million people in the US. More than 78% of chronic wounds have
biofilms, which arrest the wounds in a prolonged inflammatory phase and prevent wound healing. Biofilms are
difficult to treat, because biofilm bacteria are more resistant to antibiotics and a protective matrix of extracellular
polymeric substances reduce the diffusion rate of antibiotics into biofilms. As a result, current antibiotic delivery
technologies are not capable of delivering sufficient antibiotic concentrations to effectively eradicate chronic
wound biofilm infections.
Iontophoresis is a non-invasive, electrical current-based drug delivery technology. Conventional iontophoresis
devices have low antibiotic delivery efficiency due to the low current intensities they use. Although higher current
intensities increase antibiotic delivery efficiency, they can cause significant tissue burn due to the temperature
increase and the pH changes at the device/tissue interface. In this proposal, based on an ion current-conducting
hydrogel ionic circuit (HIC) invented in our lab, we aim to develop a novel iontophoresis device that can safely
apply current intensities that are significantly higher than what current iontophoresis devices use. Higher current
intensities will allow us to deliver significantly higher amount of antibiotics to efficaciously eliminate biofilm
bacteria and restore the normal wound healing process. In Specific Aim 1, we will first design and optimize an
HIC-based, skin-mountable iontophoretic antibiotic delivery device through computer-aided finite-element
simulation. We will then determine the antibiotic delivery efficiency and biofilm eradication efficacy of our device
using an excised human skin-based wound infection model. The safety of high-intensity ion current application
will also be evaluated using in vitro cell cultures and healthy rats. In Specific Aim 2, we will determine the in vivo
biofilm eradication efficacy and wound healing enhancement efficacy of our device using a rat bipedicled skin
flap-based ischemic wound infection model. Our outcome will establish an optimal device design and a critical
proof-of-concept for the in vivo safety, biofilm eradication efficacy, and chronic wound healing enhancement
efficacy of our high-intensity iontophoretic antibiotic delivery device. The enhanced healing of chronic wounds
enabled by our device will greatly improve the quality of life for patients and reduce the overall healthcare cost.
项目总结。在这项研究中,我们将开发一种新型的基于离子电流的离子导入装置,它可以
安全地施加高强度电流将治疗有效浓度的抗生素输送到生物膜中
在短时间内实现有效根除慢性创面生物被膜感染。慢性
目前,美国有600多万人受到创伤的影响。超过78%的慢性伤口有
生物膜,它将伤口阻止在长期的炎症阶段,并防止伤口愈合。生物膜是
很难治疗,因为生物被膜细菌对抗生素和细胞外基质的保护性更强
聚合物降低了抗生素向生物膜中的扩散速度。因此,目前的抗生素投放
技术不能提供足够的抗生素浓度来有效地根除慢性
伤口生物被膜感染。
离子导入是一种基于电流的非侵入性药物传递技术。常规离子导入
由于使用的电流强度较低,设备的抗生素输送效率较低。虽然电流较大
强度会增加抗生素的输送效率,因为温度会导致严重的组织灼伤。
增加,并且装置/组织界面处的pH改变。在这项提议中,基于离子电流传导
水凝胶离子回路(HIC)是我们实验室发明的,我们的目标是开发一种新型的离子导入装置,可以安全地
施加的电流强度明显高于当前离子导入设备使用的电流强度。大电流
强度将使我们能够提供更多的抗生素来有效地消除生物被膜
细菌和恢复正常的伤口愈合过程。在具体目标1中,我们将首先设计和优化一个
基于HIC的计算机辅助有限元可贴装离子导入抗生素给药装置
模拟。然后,我们将测定我们设备的抗生素输送效率和生物被膜清除效率
使用切除的人类皮肤为基础的伤口感染模型。高强度离子流应用的安全性
也将使用体外细胞培养和健康大鼠进行评估。在具体目标2中,我们将确定体内的
我们的装置在大鼠双蒂皮肤上的生物被膜清除效果和伤口愈合促进效果
以皮瓣为基础的创面缺血性感染模型。我们的结果将建立一个最优的设备设计和一个关键的
体内安全性、生物膜清除效率和促进慢性创面愈合的概念验证
我们的高强度离子导入抗生素输送装置的功效。促进慢性创面的愈合
通过我们的设备实现,将极大地提高患者的生活质量,并降低整体医疗成本。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment.
- DOI:10.1002/advs.202203291
- 发表时间:2022-10
- 期刊:
- 影响因子:15.1
- 作者:Su, Yajuan;Yrastorza, Jaime T.;Matis, Mitchell;Cusick, Jenna;Zhao, Siwei;Wang, Guangshun;Xie, Jingwei
- 通讯作者:Xie, Jingwei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingwei Xie其他文献
Jingwei Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingwei Xie', 18)}}的其他基金
Multifunctional Intelligent Hierarchical Fibrous Biomaterials Integrated with Multimodal Biosensing and Feedback-Based Interventions for Healing Infected Chronic Wounds
多功能智能分层纤维生物材料与多模式生物传感和基于反馈的干预措施相结合,用于治愈感染的慢性伤口
- 批准号:
10861531 - 财政年份:2023
- 资助金额:
$ 20.26万 - 项目类别:
Strategies to Enhance Engineered Heart Tissue Based Myocardial Repair
增强基于工程心脏组织的心肌修复的策略
- 批准号:
10581419 - 财政年份:2023
- 资助金额:
$ 20.26万 - 项目类别:
A Novel High-Intensity Iontophoresis-Based Antibiotic Delivery Device for Efficacious Eradication of Chronic Wound Biofilms
一种新型高强度离子电渗疗法抗生素输送装置,可有效根除慢性伤口生物膜
- 批准号:
10433163 - 财政年份:2022
- 资助金额:
$ 20.26万 - 项目类别:
Biomimetic and Injectable Highly Porous Nanofiber Microsphere-based Platform for Alveolar Bone Regeneration
用于牙槽骨再生的仿生和可注射高孔隙纳米纤维微球平台
- 批准号:
10641000 - 财政年份:2022
- 资助金额:
$ 20.26万 - 项目类别:
Engineering structural bone allografts for enhanced repair and reconstruction
工程结构同种异体骨移植以增强修复和重建
- 批准号:
9978190 - 财政年份:2020
- 资助金额:
$ 20.26万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10473866 - 财政年份:2017
- 资助金额:
$ 20.26万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10653967 - 财政年份:2017
- 资助金额:
$ 20.26万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10299094 - 财政年份:2017
- 资助金额:
$ 20.26万 - 项目类别:
Nanofiber-based Delivery of Combined Immune-modulating Compounds to Minimize Infection and Enhance Wound Healing
基于纳米纤维的组合免疫调节化合物的递送以最大程度地减少感染并促进伤口愈合
- 批准号:
10796228 - 财政年份:2017
- 资助金额:
$ 20.26万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 20.26万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 20.26万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 20.26万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 20.26万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 20.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 20.26万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 20.26万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 20.26万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 20.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 20.26万 - 项目类别:
Studentship














{{item.name}}会员




