Programmable control over histone acetylation at human regulatory elements using precision epigenome editing
使用精确表观基因组编辑对人类调控元件的组蛋白乙酰化进行可编程控制
基本信息
- 批准号:10669331
- 负责人:
- 金额:$ 56.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AcetylationArchitectureAutomobile DrivingBiological PhenomenaCRISPR screenCRISPR/Cas technologyCell NucleusCellsChimeric ProteinsChromatinChromatin LoopClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsCodeComplexDNADataDeacetylaseDeacetylationDiseaseDissectionEngineeringEnhancersEpigenetic ProcessFutureGene ActivationGene ExpressionGene Expression ProfileGene Expression RegulationGenetic TranscriptionGenomeGenomicsGlobal ChangeGoalsHealthHistone AcetylationHistone DeacetylaseHistone DeacetylationHistonesHumanHuman ActivitiesHuman GenomeIn VitroKnock-outLightLinkLocationLysineMalignant NeoplasmsMass Spectrum AnalysisMutationNucleosomesOutcomePathologicPathologyPatientsPatternPharmaceutical PreparationsPlayPost Translational Modification AnalysisPost-Translational Protein ProcessingProcessProductionProteinsRNARegulator GenesRegulatory ElementRoleSignal TransductionSourceSystemTechnologyTestingTherapeuticTranscription CoactivatorUntranslated RNAVariantVorinostatWorkWritingbasecell typecombinatorialcytotoxicdevelopmental diseaseepigenetic therapyepigenome editingepigenomicsexperienceexperimental studygenome-widehistone acetyltransferasehuman diseaseimprovedinhibitorinnovationinsightnervous system disordernew technologynucleasepreventprogramspromoterprotein complexscaffoldscreeningselective expressionside effectsmall moleculestemtoolvirtual
项目摘要
PROJECT SUMMARY/ABSTRACT
Dysregulated gene expression contributes to nearly every human disease. The level at which we understand the
inherent complexity of gene regulation ultimately dictates our ability to link and/or manipulate biomolecular
changes and pathology. Beyond their function as a structural substrate, histone proteins play key roles in gene
expression by selectively gating access to DNA and thereby guiding when and how transcriptional machinery
engages the human genome. Histone-based gene regulatory control largely stems from post-translational
modifications (PTMs) to histone proteins themselves. One type of PTM, histone lysine acetylation, is particularly
critical for gene regulation and human health, because overall acetylation levels tightly correlate with genomic
activity and gene expression, and inappropriate histone acetylation patterns are linked to diverse human
diseases. In fact, small molecules that globally change histone acetylation across the human genome have
emerged as important therapeutics. However, in many patients these drugs can be ineffective and/or can result
in toxic side effects. Furthermore, small molecules that globally alter histone acetylation patterns cannot be used
to dissect how changes at specific locations in the human genome drive disease pathology. Robust tools that
enable precise and targeted control over endogenous histone acetylation are urgently needed, because these
technologies could illuminate the function(s) that this complex epigenomic signature plays within the human
genome and open the door to new sophisticated epigenetic therapies.
In this project, we will fulfill this urgent need by building synthetic and precisely targetable biomolecules that
mimic the spectrum of activities displayed by natural human histone acetyltransferases (HATs) and histone
deacetylases (HDACs) (Aim 1). Specifically, we will combine the programmability of the nuclease null
CRISPR/Cas9 (dCas9) scaffold with different classes of human HATs/HDACs and we will use these technologies
to probe the selectivity of different HATs/HDACs in vitro and within native human chromatin. We will integrate
our results with epigenomic profiling data to define how epigenetic marks, nucleosome occupancy, and cis
regulatory element proximity influence the effects of histone acetylation at human enhancers and promoters. We
will also use mass spectrometry, dCas9-based transcriptional activators and HATs, and genome-scale knockout
screening to define the proteins/protein complexes that support histone acetylation-based gene activation (Aim
2). Finally, we will establish the impact of precisely targeted histone acetylation/deacetylation on enhancer
activity and enhancer-promoter interactions (Aim 3). Experiments will be conducted at testbed human loci that
have broad significance to human health and mechanistic epigenetics, and that will serve as proof-of-principle
for interrogating virtually any regulatory element or locus in the human genome in future efforts. To accomplish
the aims of this project, we have assembled an experienced team with synergistic expertise in CRISPR/Cas-
based epigenome editing, histone PTM analysis, and functional dissection of enhancer activity.
项目总结/摘要
基因表达失调导致几乎所有人类疾病。我们理解的水平
基因调控固有复杂性最终决定了我们连接和/或操纵生物分子
变化和病理。除了作为结构底物的功能外,组蛋白在基因表达中也起着关键作用。
通过选择性地门控DNA的进入,从而指导转录机制何时以及如何表达,
与人类基因组结合。基于组蛋白的基因调控在很大程度上源于翻译后
修饰(PTM)对组蛋白本身的修饰。一种类型的PTM,组蛋白赖氨酸乙酰化,特别是
这对基因调控和人类健康至关重要,因为整体乙酰化水平与基因组密切相关。
活性和基因表达,以及不适当的组蛋白乙酰化模式与不同的人类
疾病事实上,在人类基因组中全面改变组蛋白乙酰化的小分子,
成为重要的治疗方法。然而,在许多患者中,这些药物可能是无效的和/或可能导致
毒副作用此外,不能使用全面改变组蛋白乙酰化模式的小分子
剖析人类基因组特定位置的变化如何驱动疾病病理学。强大的工具,
能够精确和有针对性地控制内源性组蛋白乙酰化是迫切需要的,因为这些
技术可以阐明这种复杂的表观基因组特征在人类体内发挥的作用,
基因组,并打开大门,以新的复杂的表观遗传疗法。
在这个项目中,我们将通过构建合成和精确靶向的生物分子来满足这一迫切需求,
模拟天然人组蛋白乙酰转移酶(HAT)和组蛋白乙酰转移酶(HAT)所显示的活性谱,
脱乙酰酶(HDAC)(目的1)。具体来说,我们将联合收割机结合核酸酶空的可编程性
CRISPR/Cas9(dCas 9)支架与不同类别的人HAT/HDAC,我们将使用这些技术
以探测体外和天然人染色质内不同HAT/HDAC的选择性。我们将整合
我们的结果与表观基因组分析数据,以确定如何表观遗传标记,核小体占有率,顺式
调节元件的邻近性影响组蛋白乙酰化在人增强子和启动子上的作用。我们
还将使用质谱,基于dCas 9的转录激活因子和HAT,以及基因组规模的敲除。
筛选以确定支持基于组蛋白乙酰化的基因激活的蛋白质/蛋白质复合物(Aim
2)。最后,我们将建立精确靶向的组蛋白乙酰化/去乙酰化对增强子的影响。
活性和增强子-启动子相互作用(Aim 3)。实验将在试验台人类位点进行,
对人类健康和机械表观遗传学具有广泛的意义,这将作为原理证明
用于在未来的努力中询问人类基因组中几乎任何调节元件或位点。完成
为了实现这个项目的目标,我们组建了一支经验丰富的团队,他们在CRISPR/Cas方面具有协同增效的专业知识,
基于表观基因组编辑、组蛋白PTM分析和增强子活性的功能解剖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isaac Hilton其他文献
Isaac Hilton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isaac Hilton', 18)}}的其他基金
Engineering Therapeutic Human Immune Cells with Modular Self-contained Genetic Circuits
具有模块化独立遗传电路的工程治疗性人类免疫细胞
- 批准号:
10617360 - 财政年份:2021
- 资助金额:
$ 56.88万 - 项目类别:
Engineering Therapeutic Human Immune Cells with Modular Self-contained Genetic Circuits
具有模块化独立遗传电路的工程治疗性人类免疫细胞
- 批准号:
10303600 - 财政年份:2021
- 资助金额:
$ 56.88万 - 项目类别:
Site-specific control of human gene regulation for therapeutically applicable mechanistic insights
人类基因调控的位点特异性控制以获得治疗上适用的机制见解
- 批准号:
10282969 - 财政年份:2021
- 资助金额:
$ 56.88万 - 项目类别:
Site-specific control of human gene regulation for therapeutically applicable mechanistic insights
人类基因调控的位点特异性控制以获得治疗上适用的机制见解
- 批准号:
10488643 - 财政年份:2021
- 资助金额:
$ 56.88万 - 项目类别:
Site-specific control of human gene regulation for therapeutically applicable mechanistic insights (R35GM143532)
人类基因调控的位点特异性控制以获得治疗上适用的机制见解(R35GM143532)
- 批准号:
10807287 - 财政年份:2021
- 资助金额:
$ 56.88万 - 项目类别:
Site-specific control of human gene regulation for therapeutically applicable mechanistic insights
人类基因调控的位点特异性控制以获得治疗上适用的机制见解
- 批准号:
10640172 - 财政年份:2021
- 资助金额:
$ 56.88万 - 项目类别:
Engineering Therapeutic Human Immune Cells with Modular Self-contained Genetic Circuits
具有模块化独立遗传电路的工程治疗性人类免疫细胞
- 批准号:
10430257 - 财政年份:2021
- 资助金额:
$ 56.88万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 56.88万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 56.88万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 56.88万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 56.88万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 56.88万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 56.88万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 56.88万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 56.88万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 56.88万 - 项目类别:
Standard Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 56.88万 - 项目类别:
Fellowship