The contribution of respiratory burst to antibiotic failure in Staphylococcus aureus bacteremia

呼吸爆发对金黄色葡萄球菌菌血症抗生素失效的影响

基本信息

项目摘要

Summary Abstract Staphylococcus aureus infections are notoriously difficult to treat with antibiotics. Unlike many gram- negative pathogens where the risk of treatment failure is associated with the increasing spread of antibiotic resistance and the appearance of pan-resistant isolates, S. aureus remains largely susceptible to multiple antibiotics. However, despite apparent susceptibility, these antibiotic treatments frequently fail, and 20,000 people died from S. aureus infections in the U.S in 2017. S. aureus are well-equipped to survive phagocytosis and the phagolysosome of macrophages is increasingly appreciated as a major reservoir of S. aureus cells during infection. We find that, in a murine model of systemic infection, S. aureus not only survives within macrophages but also enters into a multidrug tolerant, persister state within this niche, rendering it untreatable with antibiotics. Our overall hypothesis is that macrophage-S. aureus interactions are driving antibiotic treatment failure in patients. To test this, in Aim 1, we will examine host macrophage induced antibiotic tolerance using clinical S. aureus isolates and patient matched macrophages, cultured from peripheral blood mononuclear cells taken from patients by Dr. Vance Fowler’s S. aureus bacteremia group (SABG). We will also examine if antibiotic tolerance induction by macrophages in tissue culture can predict patient outcomes. In Aim 2, we will examine if respiratory burst is also capable of generating antibiotic resistant cells in tissue culture and in a murine bacteremia model. The dual capacity of ROS produced by respiratory burst to induce antibiotic tolerance and mutagenesis creates an ideal environment for the evolution of antibiotic resistance during infection. In Aim 3, we will examine the potential of 2 therapeutic approaches to reduce antibiotic tolerance induction by macrophages. Firstly, we will apply a series of antioxidants, including a state-of the art approach involving the targeted delivery of therapeutics specifically to macrophages. Secondly, we will induce M2 polarization of macrophages to reduce ROS production and improve antibiotic susceptibility of phagocytosed S. aureus. In all, our proposal promises to address the problem of S. aureus infection recalcitrance by identifying the in vivo mechanism of persister formation in patients, examining how it contributes to antibiotic resistance and identifying therapeutic approaches to inhibit the induction of persisters and improve the outcome of antibiotic therapy.
摘要摘要 众所周知,金黄色葡萄球菌感染很难用抗生素治疗。不像很多外国佬- 治疗失败的风险与抗生素传播增加相关的阴性病原体 耐药性和泛耐药菌株的出现,金黄色葡萄球菌仍然对多重 抗生素。然而,尽管有明显的敏感性,这些抗生素治疗经常失败,20,000 2017年,美国有人死于金黄色葡萄球菌感染。 金黄色葡萄球菌具有很好的生存吞噬能力,巨噬细胞的吞噬酶体能 越来越被认为是感染期间金黄色葡萄球菌细胞的主要储存库。我们发现,在一只老鼠身上 全身感染模型,金黄色葡萄球菌不仅在巨噬细胞内存活,而且进入多药 在这一利基中,耐受、持久的状态,使其无法用抗生素治疗。 我们的总体假设是巨噬细胞-S。金黄色葡萄球菌的相互作用导致抗生素治疗失败 病人。 为了测试这一点,在目标1中,我们将使用临床S。 金黄色葡萄球菌分离株和患者匹配的巨噬细胞,从取自外周血的单个核细胞培养 来自Vance Fowler博士金黄色葡萄球菌菌血症组(SABG)的患者。我们还将检查抗生素是否 巨噬细胞在组织培养中诱导耐受可以预测患者的预后。 在目标2中,我们将检查呼吸爆发是否也能够在 组织培养和小鼠菌血症模型。呼吸爆发产生的ROS的双重容量 诱导抗生素耐受和突变为抗生素的进化创造了理想的环境 在感染期间产生抵抗力。 在目标3中,我们将研究减少抗生素耐受性的两种治疗方法的潜力。 巨噬细胞的诱导。首先,我们将应用一系列抗氧化剂,包括最先进的方法 涉及针对巨噬细胞的治疗药物的靶向输送。其次,我们将诱导M2 巨噬细胞极化以减少ROS的产生并提高吞噬细胞对抗生素的敏感性 金黄色葡萄球菌。 总而言之,我们的提案承诺通过确定 患者体内永生化形成的机制,研究它如何导致抗生素耐药性 以及确定治疗方法,以抑制持久者的诱导,并改善预后 抗生素治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Patrick Conlon其他文献

Brian Patrick Conlon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Patrick Conlon', 18)}}的其他基金

Diabetes and Antibiotic Treatment Failure
糖尿病和抗生素治疗失败
  • 批准号:
    10564510
  • 财政年份:
    2022
  • 资助金额:
    $ 67.46万
  • 项目类别:
Identifying the contribution of zinc limitation to antibiotic tolerance during S. aureus infection
确定金黄色葡萄球菌感染期间锌限制对抗生素耐受性的影响
  • 批准号:
    10192892
  • 财政年份:
    2021
  • 资助金额:
    $ 67.46万
  • 项目类别:
Antibiotic activities against S. aureus during P. aeruginosa co-infection
铜绿假单胞菌合并感染期间针对金黄色葡萄球菌的抗生素活性
  • 批准号:
    10318912
  • 财政年份:
    2018
  • 资助金额:
    $ 67.46万
  • 项目类别:
Antibiotic activities against S. aureus during P. aeruginosa co-infection
铜绿假单胞菌合并感染期间针对金黄色葡萄球菌的抗生素活性
  • 批准号:
    9917929
  • 财政年份:
    2018
  • 资助金额:
    $ 67.46万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 67.46万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.46万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 67.46万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.46万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 67.46万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.46万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 67.46万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 67.46万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 67.46万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.46万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了