Novel Deep Learning Tools for Clinical Decision Support in Postoperative Pain Management
用于术后疼痛管理临床决策支持的新型深度学习工具
基本信息
- 批准号:10670469
- 负责人:
- 金额:$ 42.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-16 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAgeAlgorithmsAmericanAnalgesicsAnesthesia proceduresBasic ScienceCaringChronicClinicalCohort StudiesComplementComplexCritical CareDataData AnalysesData SourcesDatabasesEducationElectronic Health RecordEtiologyFloridaFundingGoalsHealthHealthcare SystemsHeterogeneityImageIndividualInpatientsInterventionLeadLength of StayMeasuresMediationMedical Care CostsMethodsModelingMorbidity - disease rateNetwork-basedNeural Network SimulationNorth CarolinaOperative Surgical ProceduresOutcomePainPain MeasurementPain intensityPain managementPatientsPerioperativePharmaceutical PreparationsPhysiciansPoliciesPolicy MakerPopulationPostoperative PainPostoperative PeriodProcessRaceRandomized Controlled TrialsRegimenResearchResearch PersonnelRiskRisk FactorsSocioeconomic StatusStructureSubgroupTechniquesTestingTimeUnited States National Institutes of HealthUniversitiesanalytical toolbasecircadianclinical careclinical decision supportclinical practicecohortcomputerized toolsconvolutional neural networkcostcost effectivedata warehousedeep learningdeep learning modeldeep neural networkdesignexperienceimprovedindividual patientlearning strategymachine learning modelmortalitynovelopioid overuseoutcome predictionpain outcomepain scorepatient subsetspersonalized medicineresponsesemiparametricsexsubstance usetooluser friendly software
项目摘要
Abstract
Postoperative pain (POP) burdens millions of Americans, and it costs hundreds of billions dollars to the US
healthcare system annually. Poorly managed acute POP often leads to increased morbidity, mortality, and many
other complications, such as chronic POP and opioid overuse. Accurate prediction of POP outcomes and in-depth
understandings of causal mechanisms of POP is critical to develop effective POP management. Also, many POP
studies indicate heterogeneity of responses to anesthesia methods and postoperative substance use, suggesting
a critical need for effective methods to accurately identify patient subgroups for more effective POP management
tailored to the individual patient's needs. However, achieving these goals is challenging due to the complex
POP mechanisms and limited data from ideal large randomized controlled trials. On the other hand, abundant
observational POP data found in surgery patients' electronic health records (EHRs) are readily available, and
they can serve as a cost-effective alternative to address the critical challenges in POP management.
However, the etiology of POP is intricate, i.e. many factors may interweave with each other and impact POP
outcomes non-linearly and non-additively, introducing daunting modeling challenges. Furthermore, confounding,
a major concern associated with observational data, represents a particular challenge for conducting causal
analysis on POP data. Also, POP outcomes such as POP intensity scores are often irregularly and repeatedly
measured, and distributed non-normally with two distinct data processes, requiring more advanced analysis
methods. This proposal aims to overcome these analytic and modeling challenges with state-of-the-art deep
learning methods to improve POP management. Specifically, we will 1) establish robust deep learning models for
more accurate predictions of both acute and chronic POP to achieve timely POP control and care; 2) develop valid
deep learning based semi-parametric methods to identify true causal factors and mechanisms of POP to design
more effective POP management interventions; and 3) build powerful models to conduct robust hidden subgroup
analysis to develop the optimal POP management tailored to the individual patient's needs. Methods developed
in Aims 1 3 are motivated and will be tested by two unique data: a large EHR data from the University of North
Carolina at Chapel Hill's Carolina Data Warehouse for Health (CDW-H), and a high-quality cohort data from NIH-
funded TEMporal PostOperative Pain Signatures study, which complements the CDW-H in scale and scope. The
project will elucidate the scientific underpinnings of POP mechanisms and provide improved POP management.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baiming Zou其他文献
Baiming Zou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baiming Zou', 18)}}的其他基金
Novel Deep Learning Tools for Clinical Decision Support in Postoperative Pain Management
用于术后疼痛管理临床决策支持的新型深度学习工具
- 批准号:
10684876 - 财政年份:2022
- 资助金额:
$ 42.3万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 42.3万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 42.3万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 42.3万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 42.3万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 42.3万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 42.3万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 42.3万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 42.3万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 42.3万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 42.3万 - 项目类别:
Research Grant














{{item.name}}会员




