Novel Deep Learning Tools for Clinical Decision Support in Postoperative Pain Management
用于术后疼痛管理临床决策支持的新型深度学习工具
基本信息
- 批准号:10670469
- 负责人:
- 金额:$ 42.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-16 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAgeAlgorithmsAmericanAnalgesicsAnesthesia proceduresBasic ScienceCaringChronicClinicalCohort StudiesComplementComplexCritical CareDataData AnalysesData SourcesDatabasesEducationElectronic Health RecordEtiologyFloridaFundingGoalsHealthHealthcare SystemsHeterogeneityImageIndividualInpatientsInterventionLeadLength of StayMeasuresMediationMedical Care CostsMethodsModelingMorbidity - disease rateNetwork-basedNeural Network SimulationNorth CarolinaOperative Surgical ProceduresOutcomePainPain MeasurementPain intensityPain managementPatientsPerioperativePharmaceutical PreparationsPhysiciansPoliciesPolicy MakerPopulationPostoperative PainPostoperative PeriodProcessRaceRandomized Controlled TrialsRegimenResearchResearch PersonnelRiskRisk FactorsSocioeconomic StatusStructureSubgroupTechniquesTestingTimeUnited States National Institutes of HealthUniversitiesanalytical toolbasecircadianclinical careclinical decision supportclinical practicecohortcomputerized toolsconvolutional neural networkcostcost effectivedata warehousedeep learningdeep learning modeldeep neural networkdesignexperienceimprovedindividual patientlearning strategymachine learning modelmortalitynovelopioid overuseoutcome predictionpain outcomepain scorepatient subsetspersonalized medicineresponsesemiparametricsexsubstance usetooluser friendly software
项目摘要
Abstract
Postoperative pain (POP) burdens millions of Americans, and it costs hundreds of billions dollars to the US
healthcare system annually. Poorly managed acute POP often leads to increased morbidity, mortality, and many
other complications, such as chronic POP and opioid overuse. Accurate prediction of POP outcomes and in-depth
understandings of causal mechanisms of POP is critical to develop effective POP management. Also, many POP
studies indicate heterogeneity of responses to anesthesia methods and postoperative substance use, suggesting
a critical need for effective methods to accurately identify patient subgroups for more effective POP management
tailored to the individual patient's needs. However, achieving these goals is challenging due to the complex
POP mechanisms and limited data from ideal large randomized controlled trials. On the other hand, abundant
observational POP data found in surgery patients' electronic health records (EHRs) are readily available, and
they can serve as a cost-effective alternative to address the critical challenges in POP management.
However, the etiology of POP is intricate, i.e. many factors may interweave with each other and impact POP
outcomes non-linearly and non-additively, introducing daunting modeling challenges. Furthermore, confounding,
a major concern associated with observational data, represents a particular challenge for conducting causal
analysis on POP data. Also, POP outcomes such as POP intensity scores are often irregularly and repeatedly
measured, and distributed non-normally with two distinct data processes, requiring more advanced analysis
methods. This proposal aims to overcome these analytic and modeling challenges with state-of-the-art deep
learning methods to improve POP management. Specifically, we will 1) establish robust deep learning models for
more accurate predictions of both acute and chronic POP to achieve timely POP control and care; 2) develop valid
deep learning based semi-parametric methods to identify true causal factors and mechanisms of POP to design
more effective POP management interventions; and 3) build powerful models to conduct robust hidden subgroup
analysis to develop the optimal POP management tailored to the individual patient's needs. Methods developed
in Aims 1 3 are motivated and will be tested by two unique data: a large EHR data from the University of North
Carolina at Chapel Hill's Carolina Data Warehouse for Health (CDW-H), and a high-quality cohort data from NIH-
funded TEMporal PostOperative Pain Signatures study, which complements the CDW-H in scale and scope. The
project will elucidate the scientific underpinnings of POP mechanisms and provide improved POP management.
抽象的
术后疼痛(POP)伯恩伦斯伯恩斯数百万美国人,它花了数亿美元才向美国
每年医疗保健系统。管理不善的急性流行通常会导致发病率增加,许多
其他并发症,例如慢性流行和阿片类药物过度使用。准确预测流行成果和深入的预测
对POP的因果机制的理解对于发展有效的流行管理至关重要。另外,许多流行音乐
研究表明对麻醉方法和术后使用的反应异质性,表明
对有效方法准确识别患者子组以进行更有效的流行管理的关键需求
根据患者的需求量身定制。但是,由于复杂的
来自理想大型随机对照试验的流行机制和有限的数据。另一方面,丰富
手术患者的电子健康记录(EHR)中发现的观察性流行数据很容易获得,并且
它们可以作为应对流行管理中关键挑战的经济高效替代方案。
但是,POP的病因很复杂,即许多因素可能相互交织并影响POP
结果是非线性和非高级的,引入了艰巨的建模挑战。此外,混乱,
与观察数据相关的主要问题,代表了进行催化的特殊挑战
对流行数据的分析。同样,流行的结果(例如流行强度得分)通常是不规则且反复的
通过两个不同的数据过程进行测量和非正常分布,需要更高级的分析
方法。该建议旨在克服这些分析和建模的挑战
改善流行管理的学习方法。特定的,我们将1)建立强大的深度学习模型
对急性和慢性流行的更准确预测,以实现及时的流行控制和护理; 2)发展有效
基于深度学习的半参数方法,以识别POP设计的真正因果因素和机制
更有效的流行管理干预措施; 3)建立强大的模型以进行强大的隐藏子组
分析以开发满足个人患者需求的最佳流行管理。开发了方法
在目标1 3中是动机的,将通过两个独特的数据进行测试:北大学的大量EHR数据
卡罗来纳州教堂山的卡罗来纳州卡罗来纳州数据仓库(CDW-H),以及NIH-的高质量队列数据
资助的时间术后疼痛特征研究,在规模和范围内完成CDW-H。这
项目将阐明流行机制的科学基础,并提供改进的流行管理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baiming Zou其他文献
Baiming Zou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baiming Zou', 18)}}的其他基金
Novel Deep Learning Tools for Clinical Decision Support in Postoperative Pain Management
用于术后疼痛管理临床决策支持的新型深度学习工具
- 批准号:
10684876 - 财政年份:2022
- 资助金额:
$ 42.3万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 42.3万 - 项目类别:
Early life bladder inflammatory events in female mice lead to subsequent LUTS in adulthood
雌性小鼠生命早期的膀胱炎症事件导致成年后的 LUTS
- 批准号:
10638866 - 财政年份:2023
- 资助金额:
$ 42.3万 - 项目类别:
Mechanisms of Juvenile Neurogenesis and Post-Stroke Recovery: Determining the Role of Age-Associated Neuroimmune Interactions
青少年神经发生和中风后恢复的机制:确定与年龄相关的神经免疫相互作用的作用
- 批准号:
10637874 - 财政年份:2023
- 资助金额:
$ 42.3万 - 项目类别:
Mucosal immunity to sapovirus in early childhood
幼儿期对沙波病毒的粘膜免疫
- 批准号:
10677051 - 财政年份:2023
- 资助金额:
$ 42.3万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 42.3万 - 项目类别: