Novel Deep Learning Tools for Clinical Decision Support in Postoperative Pain Management

用于术后疼痛管理临床决策支持的新型深度学习工具

基本信息

  • 批准号:
    10684876
  • 负责人:
  • 金额:
    $ 40.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-16 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Abstract Postoperative pain (POP) burdens millions of Americans, and it costs hundreds of billions dollars to the US healthcare system annually. Poorly managed acute POP often leads to increased morbidity, mortality, and many other complications, such as chronic POP and opioid overuse. Accurate prediction of POP outcomes and in-depth understandings of causal mechanisms of POP is critical to develop effective POP management. Also, many POP studies indicate heterogeneity of responses to anesthesia methods and postoperative substance use, suggesting a critical need for effective methods to accurately identify patient subgroups for more effective POP management tailored to the individual patient's needs. However, achieving these goals is challenging due to the complex POP mechanisms and limited data from ideal large randomized controlled trials. On the other hand, abundant observational POP data found in surgery patients' electronic health records (EHRs) are readily available, and they can serve as a cost-effective alternative to address the critical challenges in POP management. However, the etiology of POP is intricate, i.e. many factors may interweave with each other and impact POP outcomes non-linearly and non-additively, introducing daunting modeling challenges. Furthermore, confounding, a major concern associated with observational data, represents a particular challenge for conducting causal analysis on POP data. Also, POP outcomes such as POP intensity scores are often irregularly and repeatedly measured, and distributed non-normally with two distinct data processes, requiring more advanced analysis methods. This proposal aims to overcome these analytic and modeling challenges with state-of-the-art deep learning methods to improve POP management. Specifically, we will 1) establish robust deep learning models for more accurate predictions of both acute and chronic POP to achieve timely POP control and care; 2) develop valid deep learning based semi-parametric methods to identify true causal factors and mechanisms of POP to design more effective POP management interventions; and 3) build powerful models to conduct robust hidden subgroup analysis to develop the optimal POP management tailored to the individual patient's needs. Methods developed in Aims 1 3 are motivated and will be tested by two unique data: a large EHR data from the University of North Carolina at Chapel Hill's Carolina Data Warehouse for Health (CDW-H), and a high-quality cohort data from NIH- funded TEMporal PostOperative Pain Signatures study, which complements the CDW-H in scale and scope. The project will elucidate the scientific underpinnings of POP mechanisms and provide improved POP management.
摘要 术后疼痛(POP)负担着数百万美国人,它花费了美国数千亿美元 医疗保健系统每年。管理不善的急性POP常常导致发病率、死亡率和许多其他疾病的增加。 其他并发症,如慢性POP和阿片类药物过度使用。准确预测持久性有机污染物的结果, 了解持久性有机污染物的成因机制,是开展有效持久性有机污染物管理的关键。许多POP 研究表明对麻醉方法和术后药物使用的反应具有异质性,提示 迫切需要有效的方法来准确识别患者亚组,以实现更有效的POP管理 根据患者的个人需求定制。然而,实现这些目标是具有挑战性的,由于复杂的 POP机制和来自理想的大型随机对照试验的有限数据。另一方面, 在手术患者的电子健康记录(EHR)中发现的观察性POP数据很容易获得, 它们可以作为一种具有成本效益的替代办法,应对持久性有机污染物管理方面的重大挑战。 然而,POP的病因是复杂的,即许多因素可能相互交织并影响POP 非线性和非叠加的结果,引入了令人生畏的建模挑战。此外,令人困惑的是, 这是与观测数据相关的一个主要问题,代表了进行因果分析的一个特殊挑战。 POP数据分析。此外,POP结果(如POP强度评分)通常不规则且重复 测量,并与两个不同的数据过程非正态分布,需要更先进的分析 方法.该提案旨在通过最先进的深度分析来克服这些分析和建模挑战。 学习改进POP管理的方法。具体来说,我们将1)建立强大的深度学习模型, 更准确地预测急性和慢性持久性有机污染物,以实现及时的持久性有机污染物控制和护理; 2)制定有效的 基于深度学习的半参数方法,以识别POP的真正因果因素和机制, 更有效的POP管理干预措施;以及3)建立强大的模型来进行强大的隐藏亚组 分析,以开发适合个体患者需求的最佳POP管理。开发的方法 在目标1 - 3中,我们提出了两个独特的数据,并将通过两个独特的数据进行测试:来自北方大学的大型EHR数据 卡罗莱纳在查佩尔山的卡罗莱纳健康数据仓库(CDW-H),以及来自NIH的高质量队列数据- 资助的TEMporal术后疼痛特征研究,在规模和范围上补充了CDW-H。的 项目将阐明持久性有机污染物机制的科学基础,并提供更好的持久性有机污染物管理。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An efficient machine learning framework to identify important clinical features associated with pulmonary embolism.
  • DOI:
    10.1371/journal.pone.0292185
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
  • 通讯作者:
Joint gene network construction by single-cell RNA sequencing data.
  • DOI:
    10.1111/biom.13645
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Dong, Meichen;He, Yiping;Jiang, Yuchao;Zou, Fei
  • 通讯作者:
    Zou, Fei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Baiming Zou其他文献

Baiming Zou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Baiming Zou', 18)}}的其他基金

Novel Deep Learning Tools for Clinical Decision Support in Postoperative Pain Management
用于术后疼痛管理临床决策支持的新型深度学习工具
  • 批准号:
    10670469
  • 财政年份:
    2022
  • 资助金额:
    $ 40.91万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 40.91万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.91万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 40.91万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.91万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 40.91万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 40.91万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.91万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 40.91万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 40.91万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.91万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了