The biophysical basis of the ADGRB3 extra-cellular interaction network.
ADGRB3 细胞外相互作用网络的生物物理学基础。
基本信息
- 批准号:10667127
- 负责人:
- 金额:$ 15.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesionsAgonistAllosteric RegulationArchitectureAreaBindingBinding ProteinsBiochemicalBiological AssayBiophysicsBlood coagulationBrainCell LineCell physiologyCellsCellular MorphologyChemistryComplementComplexCryoelectron MicroscopyDatabasesDendritesDevelopmental ProcessDiseaseDissociationDrug TargetingEligibility DeterminationFoundationsFundingFutureG-Protein-Coupled ReceptorsGenomeGoalsHealthHumanIndividualInvestigationIsomerismLaboratoriesLigandsLinkLocationMalignant NeoplasmsMammalian CellMediatingModalityModelingMolecularMolecular ConformationMorphologyMuscleMuscular DystrophiesMutationN-terminalNeuronsPharmacologic SubstanceProtein FamilyProtein SecretionProteinsProteolysisPublishingReceptor ActivationResearchSignal PathwaySignal TransductionSignaling ProteinSiteSolidStructureSynapsesTechniquesTestingTherapeuticTinTissuesTransmembrane DomainVisualizationWorkadhesion receptorantagonistcell typedesigndrug developmentdrug discoveryexperimental studyextracellularinjury and repairinnovationinsightmutantneuronal pentraxinneuropsychiatric disorderoverexpressionpleiotropismprogramsreceptorsuccesstherapeutic target
项目摘要
PROJECT SUMMARY
Adhesion G protein-coupled receptors (aGPCR) are important regulators of conserved developmental processes
associated with various diseases - especially cancers and represent potential targets for drug discovery. The
aGPCR B3 (ADGRB3) is one of the listed targets eligible for this FOA. Identified by the Pharos database as a
high-value therapeutic target with broad applicability, the multi-domain architecture of ADGRB3, its expression
in multiple tissues and cell types, and its interaction partners strongly suggest a pleiotropy of function. However,
as an understudied receptor, ADRGB3’s activation mechanism, impact on cell physiology, and signaling pathway
remains largely unknown. More specifically, it is unknown whether ADGRB3 is allosterically regulated via ligand
or interdomain interactions in extracellular N-terminal fragment (NTF), leading to ADGRB3 activation via the
Stachel tethered agonist. Central to our research program is ADGRB3 in the brain, where it is known to change
neuron morphology and synapse health. Our laboratory has studied ADGRB3 and its ligands, the synapse
organizing C1QL proteins, in the context of synapse adhesion and neuronal morphological changes. We
published the first crystal structures of C1QLs and expanded the synaptic interaction network of ADGRB3 by
showing that C1QL3 mediates a quaternary interaction between ADGRB3 and neuronal pentraxins. Our rationale
is that the biophysical understanding of ligand C1QL and NTF ADGRB3 interactions offers a unique opportunity
to visualize their chemistry and conformation, providing first insights into the ADGRB3 allosteric mechanism of
activation. This proposal aims to determine complex structures between C1QL ligands and various NTF
ADGRB3 constructs, decipher their oligomeric states, examine NTF interdomain interactions, and test ADGRB3
impact on cell morphology. Our strategy is innovative because it will provide a deep biophysical understanding
that can be directly probed in a cellular context. The proposed research is significant because it gives a solid
foundation for our longer-term goal of designing agonists or antagonists to target the NTF ADGRB3 binding
interface. The results will have an immediate positive impact as they directly address critical gaps in our
understanding of ADGRB3 and provide a generalizable molecular approach. Our results and techniques will
apply to developing therapeutics for diseases linked to ADBRB3. Thus, it has enormous potential to generally
advance biophysical investigations and pharmaceutical manipulation of a class of signaling proteins necessary
for human health.
项目摘要
粘附G蛋白偶联受体(aGPCR)是保守发育过程的重要调节因子
与各种疾病相关-特别是癌症,并且代表药物发现的潜在靶点。的
aGPCR B3(ADGRB 3)是符合本FOA条件的列出靶标之一。被Pharos数据库识别为
具有广泛适用性的高价值治疗靶点,ADGRB 3的多结构域结构,其表达
在多种组织和细胞类型中,其相互作用伴侣强烈表明功能的多效性。然而,在这方面,
作为一种未充分研究的受体,ADRGB 3的激活机制、对细胞生理学的影响和信号通路
仍然是未知的。更具体地说,尚不清楚ADGRB 3是否通过配体变构调节,
或细胞外N-末端片段(NTF)中的结构域间相互作用,导致ADGRB 3通过
Stachel系留激动剂。我们研究计划的核心是大脑中的ADGRB 3,
神经元形态和突触健康。我们的实验室研究了ADGRB 3及其配体,突触
组织C1 QL蛋白,在突触粘附和神经元形态学变化的背景下。我们
发表了C1 QLs的第一个晶体结构,并通过以下方式扩展了ADGRB 3的突触相互作用网络:
表明C1 QL 3介导ADGRB 3和神经元正五角蛋白之间的四级相互作用。我们的理据
配体C1 QL和NTF ADGRB 3相互作用的生物物理学理解提供了一个独特的机会,
可视化它们的化学和构象,提供了对ADGRB 3变构机制的第一个见解,
activation.该建议旨在确定C1 QL配体和各种NTF之间的复杂结构
ADGRB 3构建体,破译其寡聚状态,检查NTF结构域间相互作用,并测试ADGRB 3
对细胞形态的影响我们的战略是创新的,因为它将提供一个深刻的生物物理理解
可以直接在细胞环境中探测。这项研究的重要性在于它提供了一个坚实的
这为我们设计靶向NTF ADGRB 3结合的激动剂或拮抗剂的长期目标奠定了基础
接口.这些结果将产生直接的积极影响,因为它们直接解决了我们国家
了解ADGRB 3并提供可推广的分子方法。我们的成果和技术将
适用于开发与ADBRB 3相关疾病的治疗方法。因此,它具有巨大的潜力,
先进的生物物理研究和药物操纵一类信号蛋白的必要
为了人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susanne Ressl其他文献
Susanne Ressl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 15.21万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 15.21万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 15.21万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 15.21万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 15.21万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 15.21万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 15.21万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 15.21万 - 项目类别:














{{item.name}}会员




