Novel bioengineering models to dissect cardiac cell-cell defects in arrhythmogenic cardiomyopathy

剖析致心律失常性心肌病心肌细胞缺陷的新型生物工程模型

基本信息

项目摘要

PROJECT SUMMARY Arrhythmogenic cardiomyopathy (ACM) is characterized by progressive fibrofatty replacement of the myocardium, arrhythmias, and sudden death. Fibrofatty substitution in arrhythmogenic cardiomyopathy contributes to worsening arrhythmogenesis by creating a non-conductive substrate, and causes ventricular dysfunction leading to heart failure. The mechanisms underlying this disease are still unclear; a better understanding of the pathogenesis is needed to find better options for clinical management. To address this challenge, reliable species-specific models are needed; here we propose to develop a novel human model, that will serve as a system to study the pathogenesis of cardiac fibrofatty infiltration. This study integrates engineering and biomedical sciences, applying tissue engineering, cardiac physiology, bioinformatics and stem cell technologies. Our long-term goal is to provide a model of fibrofatty myocardial infiltration to investigate underlying disease mechanisms, which will lead to the development of greatly needed therapies for patients who suffer from cardiac diseases related to the presence of fibrofatty infiltration. The central objective of this proposal is to demonstrate that fibrofatty infiltration of the myocardium can be replicated in a 3D engineered cardiac tissue, resembling deficient contractility and altered electrophysiological properties that mimic what is observed in patients that suffer from ACM. The molecular signatures of fibrofatty infiltration in the context of our engineered cardiac tissue model will also be analyzed. We will approach this in two aims. In Aim 1 we will develop a 3D engineered cardiac tissue model of fibrofatty infiltration of the myocardium using hiPSCs from patients with ACM. We will combine hiPSC-cardiomyocytes and hiPSC-epicardial cells treated to undergo epithelial-mesenchymal transition; aiming to resemble the ACM functional phenotype. In Aim 2, exploiting the role of the epicardium as source of fibrofatty infiltration; we will develop a 3D engineered cardiac tissue model of myocardial fibrofatty infiltration using hiPSCs from healthy donors. In this study, we propose a strategy based on evidence that fibrofatty infiltration is induced from epicardial activation; hiPSC-derived epicardial cells will be treated to induce their further differentiation into fibroblasts and adipocytes. We will examine functional and structural properties, along with single-cell transcriptomics of the engineered cardiac tissue models. We expect that results from this study will advance our understanding of the contribution of specific cues from ACM-related cells in the pathogenesis of fibrofatty remodeling; our physiologically relevant model will serve to unravel the cell-cell cross-talk and mechanisms responsible for initiation and progression of fibrofatty infiltration of the myocardium. This project will improve the health of patients with ACM by leading the development of a human model of the disease and accelerating the application of biomedical technologies to interrogate disease mechanisms, which will aid in the identification of novel therapeutic targets.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irene Cal y Mayor-Turnbull其他文献

Irene Cal y Mayor-Turnbull的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irene Cal y Mayor-Turnbull', 18)}}的其他基金

Defining the role of non-myocytes to achieve biologically relevant engineered myocardial tissues
定义非心肌细胞在实现生物学相关的工程化心肌组织中的作用
  • 批准号:
    10064456
  • 财政年份:
    2020
  • 资助金额:
    $ 21.13万
  • 项目类别:
Defining the role of non-myocytes to achieve biologically relevant engineered myocardial tissues
定义非心肌细胞在实现生物学相关的工程化心肌组织中的作用
  • 批准号:
    10249331
  • 财政年份:
    2020
  • 资助金额:
    $ 21.13万
  • 项目类别:
Harnessing the Benefits of Adult Stem Cell Exosomes for Enhancing Cardiac Contractile Function
利用成体干细胞外泌体的益处增强心脏收缩功能
  • 批准号:
    9319796
  • 财政年份:
    2016
  • 资助金额:
    $ 21.13万
  • 项目类别:
Harnessing the Benefits of Adult Stem Cell Exosomes for Enhancing Cardiac Contractile Function
利用成体干细胞外泌体的益处增强心脏收缩功能
  • 批准号:
    9750784
  • 财政年份:
    2016
  • 资助金额:
    $ 21.13万
  • 项目类别:
Harnessing the Benefits of Adult Stem Cell Exosomes for Enhancing Cardiac Contractile Function
利用成体干细胞外泌体的益处增强心脏收缩功能
  • 批准号:
    9167105
  • 财政年份:
    2016
  • 资助金额:
    $ 21.13万
  • 项目类别:

相似海外基金

EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
  • 批准号:
    23H01186
  • 财政年份:
    2023
  • 资助金额:
    $ 21.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了