Mechanism of Quinolone Resistance

喹诺酮类耐药机制

基本信息

  • 批准号:
    10588482
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-10-01 至 2023-03-22
  • 项目状态:
    已结题

项目摘要

Fluoroquinolones, such as ciprofloxacin, are among the most efficacious and broad-spectrum oral antibacterials in clinical use. The World Health Organization lists them in their five “Highest Priority Critically Important Anti- microbials,” and these drugs are the most heavily prescribed antibacterials at Veterans Administration hospitals. The cellular targets of fluoroquinolones are the bacterial type II topoisomerases, gyrase and topoisomerase IV. These essential enzymes regulate DNA under- and overwinding and remove knots and tangles from the genome by generating transient double-stranded breaks in the genetic material. Fluoroquinolones act by increasing levels of double-stranded DNA breaks generated by gyrase and topoisomerase IV, which converts these enzymes into cellular toxins that fragment the genome. Both gyrase and topoisomerase IV are physiological targets for fluoro- quinolones, but their relative importance to drug action appears to be species- and drug-dependent. There is a growing crisis in antibacterial resistance and fluoroquinolone resistance is becoming prevalent. This resistance is threatening the clinical efficacy of fluoroquinolones and their use to treat US Veterans. For example, fluoroquinolones were used routinely to treat gonorrhea (which is caused by Neisseria gonorrhoeae), a sexually transmitted disease that is prevalent in the military and elevated in Veteran populations, starting in 1993. However, their use as front-line therapy was discontinued in 2006 due to the high incidence of resistance. Initial fluoroquinolone resistance is most often associated with specific mutations in gyrase and/or topoisomerase IV that occur at a serine residue (originally described as Ser83 in the GyrA subunit of Escherichia coli gyrase) and a glutamic/aspartic acid residue 4 amino acids downstream. Based on a published structure and functional studies from the Osheroff laboratory, these residues are proposed to anchor a water-metal ion bridge that serves as the primary conduit between fluoroquinolones and gyrase/topoisomerase IV. By characterizing fluoroquinolone-enzyme interactions, the PI has designed novel drugs that overcome resistance mutations in Mycobacterium tuberculosis gyrase and Bacillus anthracis gyrase and topoisomerase IV. The identification and characterization of novel agents that act against these well-validated topoisomerase targets and overcome fluoroquinolone resistance could have important ramifications for the health of Veterans. Recently, two new classes of gyrase/topoisomerase IV-targeted agents have been described that appear to overcome this resistance, Novel Bacterial Topoisomerase Inhibitors (NBTIs) and Spiropyrimidinetriones (SPTs). Members of these classes, gepotidacin (NBTI) and zoliflodacin (SPT), have advanced to phase 3 clinical trials. NBTIs are unique, as they induce single- rather than double-stranded enzyme-generated DNA breaks. However, little is known about the actions of NBTIs and SPTs against gyrase/topoisomerase IV or their basis of resistance. There is an urgent need to develop more effective drugs that display activity against fluoroquinolone-resistant bacteria. The premise underlying the proposed research is that understanding how drugs interact with their enzyme targets places us in a far better position to develop agents that overcome resistance. Thus, the specific aims of this proposal are to 1) determine the mechanistic basis for fluoroquinolone action and resistance with gyrase and topoisomerase IV across species; and 2) determine the mechanistic basis for the actions of NBTIs and SPTs against gyrase and topoisomerase IV across species. Proposed experiments will build upon previous studies from the Osheroff laboratory and preliminary data on the mechanism of bacterial type II topoisomerases and their interactions with fluoroquinolones, NBTI, and SPTs. Research will benefit greatly from the broad library of wild-type and drug-resistant gyrase/topoisomerase IV that the Osheroff laboratory has established. This library includes enzymes from B. anthracis, E. coli, Staphylococcus aureus, M. tuberculosis, Neisseria gonorrhoeae, Francisella tularensis, and Acinetobacter baumannii. Many of these pathogens routinely affect the health of US Veterans. Initial studies will focus on N. gonorrhoeae, M. tuberculosis, and E. coli as the model systems.
氟喹诺酮类药物,如环丙沙星,是最有效和广谱的口服抗菌药物之一 在临床上使用。世界卫生组织将其列为五个“最高优先级的至关重要的抗- 这些药物是退伍军人管理局医院最常用的抗菌药物。 氟喹诺酮类药物的细胞靶点是细菌II型拓扑异构酶、促旋酶和拓扑异构酶IV。 这些必需的酶调节DNA的欠缠绕和过缠绕,并从基因组中去除结和缠结 通过在遗传物质中产生短暂的双链断裂。氟喹诺酮类药物通过增加 由促旋酶和拓扑异构酶IV产生的双链DNA断裂,将这些酶转化为 分裂基因组的细胞毒素促旋酶和拓扑异构酶IV都是荧光素酶的生理靶点。 喹诺酮类,但它们对药物作用的相对重要性似乎是种属和药物依赖性的。 抗菌药物耐药危机日益严重,氟喹诺酮类药物耐药现象日益普遍。这 耐药性正在威胁氟喹诺酮类药物的临床疗效及其治疗美国退伍军人的用途。比如说, 氟喹诺酮类药物通常用于治疗淋病(由淋病奈瑟菌引起), 从1993年开始,这种传染病在军队中流行,在退伍军人中上升。 然而,由于耐药性发生率高,2006年停止了将其用作一线治疗。 最初的氟喹诺酮类耐药最常与促旋酶和/或 拓扑异构酶IV,其存在于丝氨酸残基(最初描述为大肠杆菌GyrA亚基中的Ser 83 大肠杆菌促旋酶)和下游4个氨基酸的谷氨酸/天冬氨酸残基。基于已发布的结构 根据Osheroff实验室的功能研究,这些残留物被提议用于锚水金属离子 作为氟喹诺酮类和促旋酶/拓扑异构酶IV之间的主要通道的桥梁。通过 PI以氟喹诺酮与酶的相互作用为特征,设计了克服耐药性的新型药物 结核分枝杆菌促旋酶和炭疽杆菌促旋酶以及拓扑异构酶IV的突变。 鉴定和表征的新的代理人,对这些行之有效的拓扑异构酶 目标和克服氟喹诺酮耐药性可能对退伍军人的健康产生重要影响。 最近,已经描述了两类新的促旋酶/拓扑异构酶IV靶向剂,它们似乎 新的细菌拓扑异构酶抑制剂(NBTI)和螺嘧啶三酮(SPT)。 这些类别的成员,吉泊替辛(NBTI)和zoliflodacin(SPT),已进入3期临床试验。 NBTI是独特的,因为它们诱导单链而不是双链酶产生的DNA断裂。然而,在这方面, 关于NBTI和SPT对促旋酶/拓扑异构酶IV的作用或它们的抗性基础知之甚少。 目前迫切需要开发出更有效的药物,显示对氟喹诺酮类耐药的活性 细菌这项研究的前提是,了解药物如何与它们之间的相互作用。 酶靶点使我们处于更有利的地位来开发克服耐药性的药物。因此,具体 该建议的目的是1)确定氟喹诺酮作用和耐药性的机制基础, 跨物种的促旋酶和拓扑异构酶IV;以及2)确定NBTI作用的机制基础 以及针对不同物种的促旋酶和拓扑异构酶IV的SPT。拟议的实验将建立在以前的基础上 Osheroff实验室的研究和细菌II型拓扑异构酶机制的初步数据 以及它们与氟喹诺酮、NBTI和SPT的相互作用。研究将大大受益于广泛的图书馆 Osheroff实验室已经建立的野生型和抗药性促旋酶/拓扑异构酶IV。此库 包括来自B的酶。anthracis、E.大肠杆菌、金黄色葡萄球菌、M.结核病,淋病奈瑟菌, 土拉热弗朗西斯菌和鲍曼不动杆菌。这些病原体中的许多经常影响美国人的健康, 老兵初步研究将集中在N。gonorrhoeae、M. tuberculosis和E. coli作为模型系统。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
1,3-Dioxane-Linked Novel Bacterial Topoisomerase Inhibitors: Expanding Structural Diversity and the Antibacterial Spectrum.
1,3-二恶烷连接的新型细菌拓扑异构酶抑制剂:扩大结构多样性和抗菌谱。
  • DOI:
    10.1021/acsmedchemlett.2c00111
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Lu,Yanran;Mann,ChelseaA;Nolan,Sheri;Collins,JessicaA;Parker,Elizabeth;Papa,Jonathan;Vibhute,Sandip;Jahanbakhsh,Seyedehameneh;Thwaites,Mary;Hufnagel,David;Hazbón,ManzourH;Moreno,Jane;Stedman,TimothyT;Wittum,Thomas;Wozniak,D
  • 通讯作者:
    Wozniak,D
Telling Your Right Hand from Your Left: The Effects of DNA Supercoil Handedness on the Actions of Type II Topoisomerases.
Basis for the discrimination of supercoil handedness during DNA cleavage by human and bacterial type II topoisomerases.
人类和细菌 II 型拓扑异构酶 DNA 切割过程中超螺旋旋向判别的基础。
  • DOI:
    10.1093/nar/gkad190
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Jian,JeffreyY;McCarty,KevinD;Byl,JoAnnW;Guengerich,FPeter;Neuman,KeirC;Osheroff,Neil
  • 通讯作者:
    Osheroff,Neil
Getting stressed over topoisomerase I poisons.
  • DOI:
    10.1016/j.chembiol.2021.04.015
  • 发表时间:
    2021-06-17
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Osheroff N
  • 通讯作者:
    Osheroff N
Activities of gyrase and topoisomerase IV on positively supercoiled DNA.
  • DOI:
    10.1093/nar/gkx649
  • 发表时间:
    2017-09-19
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Ashley RE;Dittmore A;McPherson SA;Turnbough CL Jr;Neuman KC;Osheroff N
  • 通讯作者:
    Osheroff N
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NEIL OSHEROFF其他文献

NEIL OSHEROFF的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NEIL OSHEROFF', 18)}}的其他基金

Mechanistic Studies of Gyrase/Topoisomerase IV-Targeted Antibacterials
旋转酶/拓扑异构酶 IV 靶向抗菌药物的机理研究
  • 批准号:
    10667862
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
  • 批准号:
    10364870
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
  • 批准号:
    10533336
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
  • 批准号:
    10079499
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Mechanism of Quinolone Resistance
喹诺酮类耐药机制
  • 批准号:
    10412911
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Mechanism of Quinolone Resistance
喹诺酮类耐药机制
  • 批准号:
    10047688
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
REGULATION OF CASEIN KINASE II BY EGF IN MAMMALIAN CELLS
哺乳动物细胞中 EGF 对酪蛋白激酶 II 的调节
  • 批准号:
    6236860
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
DNA LESIONS AS ENDOGENOUS TOPOISOMERASE POISONS
DNA 损伤作为内源性拓扑异构酶毒物
  • 批准号:
    2415346
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
DNA LESIONS AS ENDOGENOUS TOPOISOMERASE POISONS
DNA 损伤作为内源性拓扑异构酶毒物
  • 批准号:
    2910216
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
DNA LESIONS AS ENDOGENOUS TOPOISOMERASE POISONS
DNA 损伤作为内源性拓扑异构酶毒物
  • 批准号:
    6386305
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了