Mechanism of Quinolone Resistance
喹诺酮类耐药机制
基本信息
- 批准号:10588482
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-10-01 至 2023-03-22
- 项目状态:已结题
- 来源:
- 关键词:Acinetobacter baumanniiActive SitesAffectAmino AcidsAnti-Bacterial AgentsAspartic AcidBacillus anthracisBacterial Drug ResistanceBacterial InfectionsBindingBiological ModelsBypassCell DeathCell Death InductionCenters for Disease Control and Prevention (U.S.)CiprofloxacinClinicalComplexDNADNA DamageDNA Double Strand BreakDNA MaintenanceDNA Topoisomerase IVDataDrug InteractionsDrug resistanceDrug usageEnzyme InhibitionEnzyme InteractionEnzymesEscherichia coliFluoroquinolonesFrancisella tularensisGenetic MaterialsGenomeGoalsGonorrheaGrantHandednessHealthHospital AdministrationIn VitroIncidenceInfectionIonsLaboratoriesLibrariesLigationMediatingMetalsMilitary PersonnelMonitorMutationMycobacterium tuberculosisNeisseria gonorrhoeaeNeurofibrillary TanglesOralPharmaceutical PreparationsPhase III Clinical TrialsPhysiologicalPositioning AttributePublishingResearchResistanceRoleSerineSexually Transmitted DiseasesSingle-Stranded DNAStaphylococcus aureusStructureStructure-Activity RelationshipSuperhelical DNATopoisomeraseTopoisomerase IITopoisomerase InhibitorsToxinUnited States Department of Veterans AffairsVeteransWaterWorld Health Organizationantimicrobialbacterial resistancecell typecellular targetingclinical efficacydesigndrug actiondrug structureexperimental studyfluoroquinolone resistancein vitro activitymembermilitary veteranmutantnovelnovel therapeuticspathogenquinolone resistanceresistance mechanismresistance mutationtargeted agent
项目摘要
Fluoroquinolones, such as ciprofloxacin, are among the most efficacious and broad-spectrum oral antibacterials
in clinical use. The World Health Organization lists them in their five “Highest Priority Critically Important Anti-
microbials,” and these drugs are the most heavily prescribed antibacterials at Veterans Administration hospitals.
The cellular targets of fluoroquinolones are the bacterial type II topoisomerases, gyrase and topoisomerase IV.
These essential enzymes regulate DNA under- and overwinding and remove knots and tangles from the genome
by generating transient double-stranded breaks in the genetic material. Fluoroquinolones act by increasing levels
of double-stranded DNA breaks generated by gyrase and topoisomerase IV, which converts these enzymes into
cellular toxins that fragment the genome. Both gyrase and topoisomerase IV are physiological targets for fluoro-
quinolones, but their relative importance to drug action appears to be species- and drug-dependent.
There is a growing crisis in antibacterial resistance and fluoroquinolone resistance is becoming prevalent. This
resistance is threatening the clinical efficacy of fluoroquinolones and their use to treat US Veterans. For example,
fluoroquinolones were used routinely to treat gonorrhea (which is caused by Neisseria gonorrhoeae), a sexually
transmitted disease that is prevalent in the military and elevated in Veteran populations, starting in 1993.
However, their use as front-line therapy was discontinued in 2006 due to the high incidence of resistance.
Initial fluoroquinolone resistance is most often associated with specific mutations in gyrase and/or
topoisomerase IV that occur at a serine residue (originally described as Ser83 in the GyrA subunit of Escherichia
coli gyrase) and a glutamic/aspartic acid residue 4 amino acids downstream. Based on a published structure
and functional studies from the Osheroff laboratory, these residues are proposed to anchor a water-metal ion
bridge that serves as the primary conduit between fluoroquinolones and gyrase/topoisomerase IV. By
characterizing fluoroquinolone-enzyme interactions, the PI has designed novel drugs that overcome resistance
mutations in Mycobacterium tuberculosis gyrase and Bacillus anthracis gyrase and topoisomerase IV.
The identification and characterization of novel agents that act against these well-validated topoisomerase
targets and overcome fluoroquinolone resistance could have important ramifications for the health of Veterans.
Recently, two new classes of gyrase/topoisomerase IV-targeted agents have been described that appear to
overcome this resistance, Novel Bacterial Topoisomerase Inhibitors (NBTIs) and Spiropyrimidinetriones (SPTs).
Members of these classes, gepotidacin (NBTI) and zoliflodacin (SPT), have advanced to phase 3 clinical trials.
NBTIs are unique, as they induce single- rather than double-stranded enzyme-generated DNA breaks. However,
little is known about the actions of NBTIs and SPTs against gyrase/topoisomerase IV or their basis of resistance.
There is an urgent need to develop more effective drugs that display activity against fluoroquinolone-resistant
bacteria. The premise underlying the proposed research is that understanding how drugs interact with their
enzyme targets places us in a far better position to develop agents that overcome resistance. Thus, the specific
aims of this proposal are to 1) determine the mechanistic basis for fluoroquinolone action and resistance with
gyrase and topoisomerase IV across species; and 2) determine the mechanistic basis for the actions of NBTIs
and SPTs against gyrase and topoisomerase IV across species. Proposed experiments will build upon previous
studies from the Osheroff laboratory and preliminary data on the mechanism of bacterial type II topoisomerases
and their interactions with fluoroquinolones, NBTI, and SPTs. Research will benefit greatly from the broad library
of wild-type and drug-resistant gyrase/topoisomerase IV that the Osheroff laboratory has established. This library
includes enzymes from B. anthracis, E. coli, Staphylococcus aureus, M. tuberculosis, Neisseria gonorrhoeae,
Francisella tularensis, and Acinetobacter baumannii. Many of these pathogens routinely affect the health of US
Veterans. Initial studies will focus on N. gonorrhoeae, M. tuberculosis, and E. coli as the model systems.
氟喹诺酮类药物,如环丙沙星,是最有效的广谱口服抗菌药之一
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
1,3-Dioxane-Linked Novel Bacterial Topoisomerase Inhibitors: Expanding Structural Diversity and the Antibacterial Spectrum.
1,3-二恶烷连接的新型细菌拓扑异构酶抑制剂:扩大结构多样性和抗菌谱。
- DOI:10.1021/acsmedchemlett.2c00111
- 发表时间:2022
- 期刊:
- 影响因子:4.2
- 作者:Lu,Yanran;Mann,ChelseaA;Nolan,Sheri;Collins,JessicaA;Parker,Elizabeth;Papa,Jonathan;Vibhute,Sandip;Jahanbakhsh,Seyedehameneh;Thwaites,Mary;Hufnagel,David;Hazbón,ManzourH;Moreno,Jane;Stedman,TimothyT;Wittum,Thomas;Wozniak,D
- 通讯作者:Wozniak,D
Telling Your Right Hand from Your Left: The Effects of DNA Supercoil Handedness on the Actions of Type II Topoisomerases.
- DOI:10.3390/ijms241311199
- 发表时间:2023-07-07
- 期刊:
- 影响因子:5.6
- 作者:Jian, Jeffrey Y. Y.;Osheroff, Neil
- 通讯作者:Osheroff, Neil
Basis for the discrimination of supercoil handedness during DNA cleavage by human and bacterial type II topoisomerases.
人类和细菌 II 型拓扑异构酶 DNA 切割过程中超螺旋旋向判别的基础。
- DOI:10.1093/nar/gkad190
- 发表时间:2023
- 期刊:
- 影响因子:14.9
- 作者:Jian,JeffreyY;McCarty,KevinD;Byl,JoAnnW;Guengerich,FPeter;Neuman,KeirC;Osheroff,Neil
- 通讯作者:Osheroff,Neil
Getting stressed over topoisomerase I poisons.
- DOI:10.1016/j.chembiol.2021.04.015
- 发表时间:2021-06-17
- 期刊:
- 影响因子:8.6
- 作者:Osheroff N
- 通讯作者:Osheroff N
Activities of gyrase and topoisomerase IV on positively supercoiled DNA.
- DOI:10.1093/nar/gkx649
- 发表时间:2017-09-19
- 期刊:
- 影响因子:14.9
- 作者:Ashley RE;Dittmore A;McPherson SA;Turnbough CL Jr;Neuman KC;Osheroff N
- 通讯作者:Osheroff N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NEIL OSHEROFF其他文献
NEIL OSHEROFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NEIL OSHEROFF', 18)}}的其他基金
Mechanistic Studies of Gyrase/Topoisomerase IV-Targeted Antibacterials
旋转酶/拓扑异构酶 IV 靶向抗菌药物的机理研究
- 批准号:
10667862 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
- 批准号:
10364870 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
- 批准号:
10533336 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Mechanistic Studies of Type II Topoisomerases and Topoisomerase-Targeted Agents
II 型拓扑异构酶和拓扑异构酶靶向药物的机理研究
- 批准号:
10079499 - 财政年份:2018
- 资助金额:
-- - 项目类别:
REGULATION OF CASEIN KINASE II BY EGF IN MAMMALIAN CELLS
哺乳动物细胞中 EGF 对酪蛋白激酶 II 的调节
- 批准号:
6236860 - 财政年份:1996
- 资助金额:
-- - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




