Advancing Proteomics Technologies to Decipher the Ubiquitin-Proteasome System
推进蛋白质组学技术破译泛素-蛋白酶体系统
基本信息
- 批准号:10670369
- 负责人:
- 金额:$ 58.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBiologicalBiological ProcessBiologyCell physiologyCellsClinicalCullin ProteinsDegradation PathwayDevelopmentDiseaseEnvironmentEukaryotaHealthHumanHuman PathologyLigaseLinkMalignant NeoplasmsMapsMass Spectrum AnalysisMediatingMedicineMolecularNeurodegenerative DisordersPathway interactionsPhysiologicalProteasome InhibitorProtein-Protein Interaction MapProteinsProteomeProteomicsRegulationResearchResolutionSystemSystems BiologyTechnologyTherapeuticUbiquitinUbiquitinationadvanced systemcrosslinkdrug discoveryhuman diseaseimprovedin vivomulticatalytic endopeptidase complexnovelpreservationprotein complexprotein degradationprotein protein interactionstructural biologysuccesstherapeutic development
项目摘要
Protein-protein interactions (PPIs) are key to the formation of protein complexes, the active components
responsible for a multitude of cellular functions. Aberrant PPIs can have detrimental effects on essential
biological processes and lead to various human diseases. Elucidating PPI networks and their structural features
within cells is central to understanding fundamental biology and molecular alterations associated with human
pathologies, and ultimately facilitating therapeutic development. However, delineation of proteome networks to
define the cell’s functional states at the systems-level is challenging due to limitations in existing approaches.
Cross-linking mass spectrometry (XL-MS) has emerged as a powerful technology for PPI studies, owing to its
unique capability of preserving and capturing protein interactions in their native environments, as well as
uncovering PPI identities with structural details. Although current XL-MS technologies are successful in global
PPI analysis, unmet challenges still remain especially for complete illustration and quantitative assessment of
cellular networks, and spatial PPI mapping. This necessitates new developments to enhance technical
capabilities for advancing systems structural biology. The ubiquitin-proteasome system (UPS) is the major
degradation pathway in eukaryotes, whose network is remarkably dynamic and made of a large number of
compositionally and structurally dynamic machines that orchestrate protein ubiquitination and degradation.
Dysregulation of the UPS has been linked to many human diseases including cancer and neurodegenerative
disorders. Given the clinical success of proteasome inhibitors, the UPS has become an effective platform for
drug discovery. Although basic functions of the UPS are understood, molecular details underlying its multi-layer
regulation and mechanistic action remain elusive. Therefore, elucidating the interaction and structural dynamics
of the UPS network in its physiological context is essential not only for advancing the understanding of UPS
biology, but also for augmenting their therapeutic potential in human health and medicine. In the next five years,
we plan to address several outstanding technological challenges in PPI studies to better decipher the UPS
pathways, by pursuing the following two research directions: 1) Advancing XL-MS technologies for interactomics
and structural proteomics at the systems-level; 2) Mapping the UPS network to uncover molecular details
underlying protein ubiquitination and degradation. Specifically, we will center our efforts on developing novel XL-
MS technologies to enable in-depth and quantitative analysis of proteome networks with structural details and
enhanced spatial resolution to define cellular functional states. In addition, we will employ the newly established
technologies to delineate action mechanisms of proteasome regulators in protein degradation, investigate Cullin-
RING Ligase mediated protein ubiquitination and dissect the organization of the UPS network. Together, these
studies will result in an exciting technological advancement in proteomics research, and facilitate answering
important but unresolved biological questions associated with UPS biology.
蛋白质-蛋白质相互作用(PPI)是形成蛋白质复合物的关键,
负责多种细胞功能。异常PPI可能对基本的
生物过程,导致各种人类疾病。解析PPI网络及其结构特征
在细胞内是理解与人类相关的基本生物学和分子改变的核心。
病理学,并最终促进治疗发展。然而,蛋白质组网络的描绘,
由于现有方法的限制,在系统级定义细胞的功能状态是具有挑战性的。
交联质谱(XL-MS)已成为PPI研究的强大技术,这是由于其
在其天然环境中保存和捕获蛋白质相互作用的独特能力,以及
用结构细节揭示PPI身份。尽管目前的XL-MS技术在全球范围内取得了成功,
生产者价格指数分析,尚未满足的挑战仍然存在,特别是在全面说明和定量评估
蜂窝网络和空间PPI映射。这需要新的发展,以加强技术
推进系统结构生物学的能力。泛素-蛋白酶体系统(UPS)是主要的
真核生物中的降解途径,其网络是显着动态的,由大量的
在组成上和结构上动态的机器,协调蛋白质的泛素化和降解。
UPS的失调与许多人类疾病有关,包括癌症和神经退行性疾病。
紊乱鉴于蛋白酶体抑制剂的临床成功,UPS已成为一个有效的平台,
药物发现虽然UPS的基本功能已经被理解,但其多层结构的分子细节仍然是未知的。
监管和机械行动仍然难以捉摸。因此,阐明相互作用和结构动力学
在其生理背景下的UPS网络是必不可少的,不仅是为了促进对UPS的理解
生物学,而且还用于增强其在人类健康和医学中的治疗潜力。在接下来的五年里,
我们计划在PPI研究中解决几个突出的技术挑战,以更好地破译UPS
途径,通过追求以下两个研究方向:1)推进XL-MS技术的相互作用
系统水平的结构蛋白质组学; 2)绘制UPS网络以揭示分子细节
潜在的蛋白质泛素化和降解。具体来说,我们将集中精力开发新型XL-
MS技术能够对蛋白质组网络进行深入和定量分析,包括结构细节,
增强的空间分辨率以定义细胞功能状态。此外,我们会聘请新成立的
技术来描述蛋白酶体调节剂在蛋白质降解中的作用机制,研究Cullin-
RING连接酶介导的蛋白质泛素化和剖析UPS网络的组织。所有这些
研究将导致蛋白质组学研究的令人兴奋的技术进步,并有助于回答
与UPS生物学相关的重要但尚未解决的生物学问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lan Huang其他文献
Lan Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lan Huang', 18)}}的其他基金
Advancing Proteomics Technologies to Decipher the Ubiquitin-Proteasome System
推进蛋白质组学技术破译泛素-蛋白酶体系统
- 批准号:
10405969 - 财政年份:2022
- 资助金额:
$ 58.88万 - 项目类别:
Proteomics of the Proteasome Interacting Network
蛋白酶体相互作用网络的蛋白质组学
- 批准号:
10703865 - 财政年份:2022
- 资助金额:
$ 58.88万 - 项目类别:
Advancing Proteomics Technologies to Decipher the Ubiquitin-Proteasome System
推进蛋白质组学技术破译泛素-蛋白酶体系统
- 批准号:
10713531 - 财政年份:2022
- 资助金额:
$ 58.88万 - 项目类别:
Structural dynamics and function of the COP9 signalosome
COP9信号体的结构动力学和功能
- 批准号:
10256020 - 财政年份:2018
- 资助金额:
$ 58.88万 - 项目类别:
In Vivo Interactome and Dynamics of Cullin-Ring Ligases
Cullin 环连接酶的体内相互作用组和动力学
- 批准号:
8489863 - 财政年份:2013
- 资助金额:
$ 58.88万 - 项目类别:
In Vivo Interactome and Dynamics of Cullin-Ring Ligases
Cullin 环连接酶的体内相互作用组和动力学
- 批准号:
9100788 - 财政年份:2013
- 资助金额:
$ 58.88万 - 项目类别:
In Vivo Interactome and Dynamics of Cullin-Ring Ligases
Cullin 环连接酶的体内相互作用组和动力学
- 批准号:
8692945 - 财政年份:2013
- 资助金额:
$ 58.88万 - 项目类别:
Function and Regulation of the CSN in the NF-kB Activation Pathway
CSN 在 NF-kB 激活途径中的功能和调节
- 批准号:
8468669 - 财政年份:2012
- 资助金额:
$ 58.88万 - 项目类别:
Function and Regulation of the CSN in the NF-kB Activation Pathway
CSN 在 NF-kB 激活途径中的功能和调节
- 批准号:
8303937 - 财政年份:2012
- 资助金额:
$ 58.88万 - 项目类别:
DYNAMICS OF PROTEASOME COMPLEXES & THEIR INTERACTIONS WITH CSN COMPLEXES
蛋白酶体复合物的动力学
- 批准号:
8171000 - 财政年份:2010
- 资助金额:
$ 58.88万 - 项目类别:
相似海外基金
Nitrous Oxide Management in a Novel Biological Process
新型生物过程中的一氧化二氮管理
- 批准号:
2789227 - 财政年份:2023
- 资助金额:
$ 58.88万 - 项目类别:
Studentship
Dynamic regulation of RNA modification and biological process
RNA修饰和生物过程的动态调控
- 批准号:
18H05272 - 财政年份:2018
- 资助金额:
$ 58.88万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2017
- 资助金额:
$ 58.88万 - 项目类别:
Discovery Grants Program - Individual
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2016
- 资助金额:
$ 58.88万 - 项目类别:
Discovery Grants Program - Individual
Organizing the Waterloo Biofilter biological process for treating wastewater concentrated by extreme water conservation plumbing
组织滑铁卢生物过滤器生物工艺处理通过极端节水管道浓缩的废水
- 批准号:
479764-2015 - 财政年份:2015
- 资助金额:
$ 58.88万 - 项目类别:
Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2015
- 资助金额:
$ 58.88万 - 项目类别:
Discovery Grants Program - Individual
Development of Biological Process for VOC treatment
VOC处理生物工艺的开发
- 批准号:
476672-2014 - 财政年份:2015
- 资助金额:
$ 58.88万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2014
- 资助金额:
$ 58.88万 - 项目类别:
Discovery Grants Program - Individual
Optimization of a biological process treating winery wastewater: anaerobic digestion integrated with Waterloo biofilter
处理酿酒厂废水的生物工艺优化:厌氧消化与滑铁卢生物过滤器集成
- 批准号:
463193-2014 - 财政年份:2014
- 资助金额:
$ 58.88万 - 项目类别:
Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2013
- 资助金额:
$ 58.88万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




