Using Atrial Mechanics To Identify Fibrosis In Patients with Atrial Fibrillation
利用心房力学识别心房颤动患者的纤维化
基本信息
- 批准号:10670803
- 负责人:
- 金额:$ 67.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-24 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAblationAccelerationAdoptionAffectAlgorithmsAmericanArrhythmiaAtrial FibrillationAttenuatedBenchmarkingBiological MarkersBreathingCardiacCardiac ablationCessation of lifeCicatrixClinicalComplexCoupledDependenceDiseaseEchocardiographyElectric CountershockElectrophysiology (science)FibrosisFosteringGadoliniumGrantGuidelinesHeart AtriumHeart-Lung TransplantationHistologicHistologyImageImpairmentInfiltrationLawsLinkMagnetic ResonanceMagnetic Resonance ImagingMapsMeasurementMeasuresMechanicsMethodsMotionMyocardialPacemakersPathogenesisPathologicPatientsPeriodicityPharmacological TreatmentPrecision therapeuticsPrediction of Response to TherapyProcessProtocols documentationPublic HealthRadiationRecurrenceReportingReproducibilityRiskSinusStrokeTechniquesTissuesTrainingTransplant RecipientsTransplantationValidationVentricularWorkatrioventricular nodecardiac magnetic resonance imagingcardiovascular disorder riskcostdesigndisease phenotypeheart rhythmimage processingimplantationin vivoindexingmathematical modelopen sourceoptimal treatmentspersonalized medicinepharmacologicpredicting responsescaffoldside effectsuccesstooltreatment strategyvoltage
项目摘要
PROJECT SUMMARY
Atrial fibrillation (AF) is a highly prevalent disease affecting 5.2 million Americans, costs the US $6-26 billion per
year, and increases the risk of cardiovascular disease, stroke, and death. Selecting the optimal treatment for
each AF patient remains a daily clinical challenge as no single treatment is best in all cases. Symptomatic
patients are most frequently treated pharmacologically, or by catheter ablation to isolate or destroy aberrant atrial
tissue. However, both are commonly ineffective and there are no consistent predictors of response.
Pathological atrial fibrosis is a major contributor to sustaining AF, has repeatedly been implicated in its
pathogenesis and is proposed as a biomarker for personalizing treatment. We propose to use cardiac MRI (CMR)
mechanics-based measures to identify localized atrial fibrosis. Atrial fibrosis fosters chaotic electrophysiology
and also attenuates local atrial mechanics, decreases contractility, and increases stiffness. The impact on atrial
mechanics is substantial. Therefore, we hypothesize that attenuated atrial mechanics provide a robust measure
of atrial fibrosis. The result of this project will be the first histologically validated, reproducible and repeatable
clinical tool that enables estimation of atrial fibrosis burden.
The aims of this grant will exploit the mechanistic link between atrial fibrosis and atrial mechanics to develop
and validate a clinical workflow for measuring a mechanics-based classifier of fibrosis. The overall objective is
to establish a mechanics-based and discriminatory measure of histologically validated atrial fibrosis. The
following aims are designed to achieve this objective.
AIM 1. To robustly measure 3D atrial CMR strain and stiffness in sinus rhythm and AF. Atrial motion – even
during AF – is readily apparent on CMR. Our free-breathing and arrhythmia insensitive CMR protocol enables
measuring atrial mechanics without the need for contrast or the limitations of echocardiography, nor the radiation
of CT. We seek to detect atrial fibrosis by identifying impaired atrial mechanics.
AIM 2. Validate and benchmark a CMR mechanics-based classifier of atrial fibrosis. The optimal index for
identifying local atrial fibrosis from atrial mechanics is not known. Training and validating a classifier requires a
ground truth, which we will measure directly using histology. The classifier will then be benchmarked against
conventional markers of atrial fibrosis (voltage mapping and LGE-CMR).
Public Health Significance – Identifying patients with atrial fibrillation (AF) that will respond to specific treatment
strategies such as ablation is a daily challenge for cardiologists. Selecting the optimal treatment for each AF
patient remains an open challenge. The results of this work will enable clinicians to better manage patients with
atrial fibrillation by helping to identify the atrial fibrosis burden using cardiac MRI based methods.
项目摘要
心房颤动(AF)是一种影响520万美国人的高度流行的疾病,每例患者花费60 - 260亿美元。
一年,并增加心血管疾病,中风和死亡的风险。选择最佳治疗方法
每位房颤患者每天都面临临床挑战,因为没有一种治疗方法是所有病例中最好的。症状性
患者最常接受经皮或导管消融治疗,以隔离或破坏异常心房肌
组织.然而,这两种方法通常都是无效的,并且没有一致的反应预测因素。
病理性心房纤维化是持续性房颤的主要原因,
发病机制,并提出作为个性化治疗的生物标志物。我们建议使用心脏MRI(CMR)
基于力学的措施,以确定局部心房纤维化。心房纤维化导致电生理紊乱
并且还减弱局部心房力学、降低收缩性和增加僵硬度。对心房的影响
机械是很重要的。因此,我们假设,衰减的心房力学提供了一个强大的措施,
心房纤维化该项目的结果将是第一个组织学验证,可重现和可重复的
能够估计心房纤维化负荷的临床工具。
该基金的目的是利用心房纤维化和心房力学之间的机制联系,
并验证用于测量基于力学的纤维化分类器的临床工作流程。总体目标是
建立一种基于力学的、组织学验证的心房纤维化的判别性指标。的
为实现这一目标,制定了以下目标。
AIM 1.稳健测量窦性心律和房颤时的3D心房CMR应变和刚度。
AF期间-在CMR上很明显。我们的自由呼吸和心律失常不敏感CMR协议使
测量心房力学,不需要对比或超声心动图的限制,也不需要辐射
的CT。我们试图通过识别受损的心房力学来检测心房纤维化。
AIM 2.对心房纤维化的CMR力学分类器进行建模和基准测试。最佳指数为
从心房力学中识别局部心房纤维化是未知的。训练和验证分类器需要一个
我们将直接使用组织学来测量基础事实。然后,将对分类器进行基准测试,
心房纤维化的常规标志物(电压标测和LGE-CMR)。
公共卫生意义-识别对特定治疗有反应的房颤(AF)患者
诸如消融的策略是心脏病专家每天面临的挑战。为每种AF选择最佳治疗
患者仍然是一个开放的挑战。这项工作的结果将使临床医生能够更好地管理患者,
通过使用基于心脏MRI的方法帮助识别心房纤维化负担来治疗房颤。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cost-effectiveness analysis of leadless cardiac resynchronization therapy.
无引线心脏再同步治疗的成本效益分析。
- DOI:10.1111/jce.16102
- 发表时间:2023
- 期刊:
- 影响因子:2.7
- 作者:Wijesuriya,Nadeev;Mehta,Vishal;Vere,FelicityDe;Howell,Sandra;Behar,JonathanM;Shute,Andrew;Lee,Michael;Bosco,Paolo;Niederer,StevenA;Rinaldi,ChristopherA
- 通讯作者:Rinaldi,ChristopherA
Computational modeling identifies embolic stroke of undetermined source patients with potential arrhythmic substrate.
- DOI:10.7554/elife.64213
- 发表时间:2021-05-04
- 期刊:
- 影响因子:7.7
- 作者:Bifulco SF;Scott GD;Sarairah S;Birjandian Z;Roney CH;Niederer SA;Mahnkopf C;Kuhnlein P;Mitlacher M;Tirschwell D;Longstreth WT;Akoum N;Boyle PM
- 通讯作者:Boyle PM
Cell to whole organ global sensitivity analysis on a four-chamber heart electromechanics model using Gaussian processes emulators.
- DOI:10.1371/journal.pcbi.1011257
- 发表时间:2023-06
- 期刊:
- 影响因子:4.3
- 作者:
- 通讯作者:
Using synthetic data generation to train a cardiac motion tag tracking neural network.
- DOI:10.1016/j.media.2021.102223
- 发表时间:2021-12
- 期刊:
- 影响因子:10.9
- 作者:Loecher M;Perotti LE;Ennis DB
- 通讯作者:Ennis DB
OpenEP: A Cross-Platform Electroanatomic Mapping Data Format and Analysis Platform for Electrophysiology Research.
- DOI:10.3389/fphys.2021.646023
- 发表时间:2021
- 期刊:
- 影响因子:4
- 作者:Williams SE;Roney CH;Connolly A;Sim I;Whitaker J;O'Hare D;Kotadia I;O'Neill L;Corrado C;Bishop M;Niederer SA;Wright M;O'Neill M;Linton NWF
- 通讯作者:Linton NWF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel B Ennis其他文献
Rapid phase contrast MRI with minimum time gradient waveform design using convex optimization
- DOI:
10.1186/1532-429x-16-s1-w7 - 发表时间:
2014-01-16 - 期刊:
- 影响因子:
- 作者:
Matthew J Middione;Holden H Wu;Daniel B Ennis - 通讯作者:
Daniel B Ennis
High-resolution spin-echo Cardiac Diffusion-Weighted MRI with motion compensated Convex Optimized Diffusion Encoding (CODE)
- DOI:
10.1186/1532-429x-18-s1-p26 - 发表时间:
2016-01-27 - 期刊:
- 影响因子:
- 作者:
Eric Aliotta;Holden H Wu;Daniel B Ennis - 通讯作者:
Daniel B Ennis
The effect of free-breathing on left ventricular rotational mechanics in normal subjects and patients with duchenne muscular dystrophy
- DOI:
10.1186/1532-429x-17-s1-q22 - 发表时间:
2015-02-03 - 期刊:
- 影响因子:
- 作者:
Meral Reyhan;Zhe Wang;Hyun J Kim;Nancy Halnon;Paul J Finn;Daniel B Ennis - 通讯作者:
Daniel B Ennis
Joint reconstruction of quantitative T<sub>2</sub> and apparent diffusion coefficient (ADC) maps in the heart
- DOI:
10.1186/1532-429x-17-s1-w19 - 发表时间:
2015-02-03 - 期刊:
- 影响因子:
- 作者:
Eric Aliotta;Daniel B Ennis - 通讯作者:
Daniel B Ennis
Hybrid One- and Two-sided Flow-Encodings Only (HOTFEO) to accelerate 4D flow MRI
- DOI:
10.1186/1532-429x-18-s1-p364 - 发表时间:
2016-01-27 - 期刊:
- 影响因子:
- 作者:
Da Wang;Jiaxin Shao;Daniel B Ennis;Peng Hu - 通讯作者:
Peng Hu
Daniel B Ennis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel B Ennis', 18)}}的其他基金
Using Atrial Mechanics To Identify Fibrosis In Patients with Atrial Fibrillation
利用心房力学识别心房颤动患者的纤维化
- 批准号:
10436909 - 财政年份:2020
- 资助金额:
$ 67.13万 - 项目类别:
Using Atrial Mechanics To Identify Fibrosis In Patients with Atrial Fibrillation
利用心房力学识别心房颤动患者的纤维化
- 批准号:
10201745 - 财政年份:2020
- 资助金额:
$ 67.13万 - 项目类别:
A New Framework for Understanding the Mechanisms of Diastolic Dysfunction
理解舒张功能障碍机制的新框架
- 批准号:
9384617 - 财政年份:2017
- 资助金额:
$ 67.13万 - 项目类别:
Are 3T MRI Exams Safe For Patients with Pacemakers and ICDs?
3T MRI 检查对于使用起搏器和 ICD 的患者安全吗?
- 批准号:
8872837 - 财政年份:2015
- 资助金额:
$ 67.13万 - 项目类别:
Myocardial Structure, Function, and Remodeling in Mitral Regurgitation
二尖瓣反流中的心肌结构、功能和重塑
- 批准号:
7651838 - 财政年份:2008
- 资助金额:
$ 67.13万 - 项目类别:
Myocardial Structure, Function, and Remodeling in Mitral Regurgitation
二尖瓣反流中的心肌结构、功能和重塑
- 批准号:
7691252 - 财政年份:2008
- 资助金额:
$ 67.13万 - 项目类别:
Myocardial Structure, Function, and Remodeling in Mitral Regurgitation
二尖瓣反流中的心肌结构、功能和重塑
- 批准号:
7880934 - 财政年份:2008
- 资助金额:
$ 67.13万 - 项目类别:
ANALYSIS OF LEFT VENTRICULAR MYOCARDIAL STRUCTURE USING DTMRI
使用 DTMRI 分析左心室心肌结构
- 批准号:
7601918 - 财政年份:2007
- 资助金额:
$ 67.13万 - 项目类别:
REGIONAL HETEROGENEITY OF OVINE MYOFIBER INCLINATION ANGLE
绵羊肌纤维倾斜角的区域异质性
- 批准号:
7601916 - 财政年份:2007
- 资助金额:
$ 67.13万 - 项目类别:
Myocardial Structure, Function, and Remodeling in Mitral Regurgitation
二尖瓣反流中的心肌结构、功能和重塑
- 批准号:
7224307 - 财政年份:2006
- 资助金额:
$ 67.13万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 67.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 67.13万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 67.13万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 67.13万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 67.13万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 67.13万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 67.13万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 67.13万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 67.13万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 67.13万 - 项目类别:
Standard Grant