Investigation of the role of TMED9 in the accumulation of a mutant protein in MUC1 kidney disease (MKD)
研究 TMED9 在 MUC1 肾病 (MKD) 突变蛋白积累中的作用
基本信息
- 批准号:10697382
- 负责人:
- 金额:$ 4.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2024-06-29
- 项目状态:已结题
- 来源:
- 关键词:AddressBindingBiologyCRISPR/Cas technologyCellular biologyChronic Kidney FailureCo-ImmunoprecipitationsDevelopmentDiseaseEpithelial CellsFamilial HypercholesterolemiaFrameshift MutationGeneticHealthIn VitroInheritedInvestigationKidneyKidney DiseasesKidney FailureKnock-in MouseKnock-outKnockout MiceLaboratoriesLow-Density LipoproteinsMUC1 geneMapsMass Spectrum AnalysisMediatingMediatorMorbidity - disease rateMucin 1 proteinNephrologyOrganoidsPathologyPathway interactionsPatientsPatternPhenotypePopulationProcessProteinsRare DiseasesResearchResourcesRoleSystemic diseaseTestingThapsigarginTherapeuticToxic effectTranslatingTubular formationVesicleWorkautosomeendoplasmic reticulum stressgraduate studentin vivoinduced pluripotent stem cellinnovative technologiesinsightinterestmedical schoolsmortalitymouse modelmutantnew therapeutic targetprotein complexproteostasistargeted treatmenttherapeutic targettrafficking
项目摘要
Abstract
Chronic kidney disease (CKD), most often caused by manifestations of systemic disease or underlying primary
kidney disease, is a significant cause of worldwide patient morbidity and mortality. The field of nephrology is
severely lacking in mechanism-based, targeted therapeutics to treat patients with CKD. Studies of primary, rare
genetic kidney diseases, which lead to perturbations of common, essential kidney processes, can be harnessed
to inform foundational kidney biology and identify potential therapeutic targets for kidney diseases, both rare and
common. MUC1 kidney disease (MKD), or autosomal dominant tubulointerstitial kidney disease-MUC1 (ADTKD-
MUC1), is a rare genetic kidney disease caused by a frameshift mutation in the MUC1 gene. MKD leads to
progressive kidney tubulointerstitial damage and eventual renal failure. Recent studies have shown that MKD is
a toxic proteinopathy in which the mutant frameshift protein, MUC1-fs, intracellularly accumulates in kidney
tubular epithelial cells and is associated with increased levels of cellular toxicity. MUC1-fs has been further shown
to accumulate specifically in the early secretory pathway of MKD patient kidney tubular epithelial cells (P cells),
in vesicles that contain the protein TMED9. Critically, it has been found that knockout of TMED9 ameliorates
MUC1-fs accumulation in P cells. TMED9 and MUC1-fs have been shown to additionally colocalize in both an in
vivo MKD mouse model and MKD patient-derived iPSC organoids. Recent work has shown that TMED9 co-
immunoprecipitates with MUC1-fs in P cells. Based on these observations, this proposed work aims to
investigate the following hypothesis: In the setting of MKD, TMED9 and its interactors halt the trafficking of
misfolded MUC1-fs and retain it in the early secretory pathway, leading to MUC1-fs accumulation and increased
cellular toxicity. In Aim 1, the effect of TMED9 on MUC1-fs trafficking through the early secretory pathway will
be assessed by knockout of TMED9 in P cells and mapping of MUC1-fs trafficking by inhibition of secretory
pathway branches and assessment of MUC1-fs reaccumulation. The role of TMED9 as a mediator of cellular
toxicity will be assessed by comparison of cellular toxicity, following treatment with the ER stress-inducer
thapsigargin, in P cells and TMED9 knockout P cells. In Aim 2, the TMED9 protein complex that mediates MUC1-
fs accumulation will be identified. First, interactors of TMED9 in P cells will be found using co-immunoprecipitation
and mass spectrometry. Then, TMED9 interactors necessary for MUC1-fs accumulation will be identified using
a CRISPR/Cas9 arrayed knockout screen. Finally, the binding of these necessary interactors to MUC1-fs will be
assessed. In Aim 3, the role of TMED9 in MUC1-fs accumulation will be explored in vivo. A TMED9 knockout
mouse will be crossed with the established MKD knock-in mouse and the in vivo effect of TMED9 knockout on
MUC1-fs accumulation and other known MKD knock-in mouse phenotypes will be assessed.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alissa Campbell Goss其他文献
Alissa Campbell Goss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alissa Campbell Goss', 18)}}的其他基金
Investigation of the role of TMED9 in the accumulation of a mutant protein in MUC1 kidney disease (MKD)
研究 TMED9 在 MUC1 肾病 (MKD) 突变蛋白积累中的作用
- 批准号:
10252805 - 财政年份:2020
- 资助金额:
$ 4.59万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Cellular Mechanism of Oxysterol-Binding Protein (OSBP) in Viral Proliferation: A Chemical Biology Approach
氧甾醇结合蛋白 (OSBP) 在病毒增殖中的细胞机制:化学生物学方法
- 批准号:
10588146 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
NSF Postdoctoral Fellowship in Biology FY 2021: Analyzing the interplay of chromatin accessibility and transcription factor binding to decipher the cis-regulatory code
2021 财年 NSF 生物学博士后奖学金:分析染色质可及性和转录因子结合的相互作用以破译顺式调控密码
- 批准号:
2109441 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Fellowship Award
Cellular Mechanism of Oxysterol-Binding Protein (OSBP) in Viral Proliferation: A Chemical Biology Approach
氧甾醇结合蛋白 (OSBP) 在病毒增殖中的细胞机制:化学生物学方法
- 批准号:
10212013 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Systems biology analysis of RNA-binding protein aggregation during cellular aging
细胞衰老过程中RNA结合蛋白聚集的系统生物学分析
- 批准号:
10211598 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Systems biology analysis of RNA-binding protein aggregation during cellular aging
细胞衰老过程中RNA结合蛋白聚集的系统生物学分析
- 批准号:
10661772 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Cellular Mechanism of Oxysterol-Binding Protein (OSBP) in Viral Proliferation: A Chemical Biology Approach
氧甾醇结合蛋白 (OSBP) 在病毒增殖中的细胞机制:化学生物学方法
- 批准号:
10772408 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Cellular Mechanism of Oxysterol-Binding Protein (OSBP) in Viral Proliferation: A Chemical Biology Approach
氧甾醇结合蛋白 (OSBP) 在病毒增殖中的细胞机制:化学生物学方法
- 批准号:
10749964 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Systems biology analysis of RNA-binding protein aggregation during cellular aging
细胞衰老过程中RNA结合蛋白聚集的系统生物学分析
- 批准号:
10483171 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
Examining the role of SUMOylation in regulating RNA binding protein biology
检查 SUMOylation 在调节 RNA 结合蛋白生物学中的作用
- 批准号:
563739-2021 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别:
University Undergraduate Student Research Awards
Cellular Mechanism of Oxysterol-Binding Protein (OSBP) in Viral Proliferation: A Chemical Biology Approach
氧甾醇结合蛋白 (OSBP) 在病毒增殖中的细胞机制:化学生物学方法
- 批准号:
10388237 - 财政年份:2021
- 资助金额:
$ 4.59万 - 项目类别: