Statistical Methods for Modern Evidence Syntheses with Multiple Biases

具有多重偏差的现代证据综合统计方法

基本信息

  • 批准号:
    10672230
  • 负责人:
  • 金额:
    $ 33.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Meta-analyses critically shape clinical recommendations and policy, but their credibility may be undermined by both within-study biases (e.g., confounding in observational studies) and across-study biases (e.g., filtering by publication bias). These biases can produce meta-analysis estimates that are too large, too small, or in the wrong direction. Scientists, clinicians, and health policymakers are increasingly concerned about these biases given recent empirical evidence that meta-analyses on the same topic can disagree with one another and with the results of systematic replication studies, which are designed to minimize publication bias by having independent investigators repeat published studies. This eroding confidence in the published literature and in meta-analyses represents an epistemic turning point. This proposal develops and empirically validates an innovative, domain-independent statistical framework for quantitatively synthesizing studies subject to within- and across-study biases. Aim 1 will thus develop novel, domain-independent statistical sensitivity analyses will quantify how results of meta-analysis estimates might be shifted by within- and across-study biases, that allow bias-corrected synthesis of studies with these two forms of bias, and that forecast the likely range of results of new studies and the impact of adding them to an existing meta-analysis. The methods will be made broadly accessible via user-friendly websites and R software, and their use will be illustrated in meta-analyses on pediatric obesity. Aim 2 will illustrate the methods' real-world impact and compare their performance to that of existing methods by using the methods to characterize the credibility of Cochrane database meta-analyses. Aim 3 will involve a collaboration with “ManyBabies'', an innovative initiative to conduct conceptual replications of landmark results in developmental psychology. The results of these planned replications will be forecasted using the new methods of Aim 1 as well as existing methods; the forecasts will be compared studies' results after they are conducted, providing real performance benchmarks. Aims 2-3 will also provide online “dashboards” allowing intuitive exploration of the results. The immediate-term goal is to develop methods and software that, unlike existing statistical methods, assess the robustness of a given meta-analysis to the joint effects of within- and across-study biases; that synthesize and compare results of meta-analyses with those of studies subject to less publication bias (e.g., replication studies); and that use potentially biased meta-analyses to plan the optimal design of new studies. The long-term goal is to calibrate confidence in meta-analyses to more swiftly inform scientifically robust conclusions that will improve practice and health policy.
项目总结/摘要 荟萃分析对临床建议和政策产生了重要影响,但其可信度可能 被研究内的偏倚(例如,观察性研究中的混杂)和跨研究偏倚 (e.g.,通过出版物偏差进行过滤)。这些偏差也会产生过大的荟萃分析估计值 小,或者在错误的方向。科学家、临床医生和卫生政策制定者越来越关注 关于这些偏见,最近的经验证据表明,对同一主题的荟萃分析可能不同意 并与旨在尽量减少出版物的系统性复制研究的结果相结合 通过让独立研究者重复已发表的研究而产生的偏倚。这削弱了人们对出版物的信心, 文献和荟萃分析代表了认识上的转折点。 该建议开发并实证验证了一种创新的,独立于领域的统计方法, 定量综合研究的框架内和跨研究的偏见。目标1将 开发新的、独立于领域的统计敏感性分析,将量化荟萃分析的结果 估计值可能会因研究内和研究间偏倚而发生变化,从而允许对研究进行偏倚校正综合 这两种形式的偏见,并预测可能的范围内的新的研究结果和影响, 添加到现有的荟萃分析中。这些方法将通过用户友好的方式广泛使用 网站和R软件,他们的使用将在儿童肥胖的荟萃分析中说明。目标2将 说明方法的现实世界的影响,并比较其性能与现有的方法,通过使用 描述科克伦数据库荟萃分析可信度的方法。目标3将涉及 与“ManyBabies”合作,这是一项创新举措,旨在从概念上复制具有里程碑意义的成果 在发展心理学中。这些计划复制的结果将使用新的 目标1的方法以及现有的方法;预测将比较研究的结果后,他们是 提供了真实的业绩基准。目标2-3还将提供在线“仪表板”, 对结果的直观探索。 近期目标是开发方法和软件,与现有的统计方法不同, 评估给定荟萃分析对研究内和研究间偏倚联合效应的稳健性; 综合并比较荟萃分析的结果与发表偏倚较小的研究的结果(例如, 重复研究);以及使用潜在偏倚的荟萃分析来规划新研究的最佳设计。 长期目标是校准荟萃分析的信心,以更快地提供科学可靠的信息。 这些结论将改善实践和卫生政策。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using selection models to assess sensitivity to publication bias: A tutorial and call for more routine use.
Is There Evidence of P-Hacking in Imaging Research?
成像研究中有p黑客的证据吗?
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maya Mathur其他文献

Maya Mathur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maya Mathur', 18)}}的其他基金

Statistical Methods for Modern Evidence Syntheses with Multiple Biases
具有多重偏差的现代证据综合统计方法
  • 批准号:
    10338033
  • 财政年份:
    2021
  • 资助金额:
    $ 33.45万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 33.45万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 33.45万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.45万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.45万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.45万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 33.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 33.45万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 33.45万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 33.45万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 33.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了