Cell types and functional circuitry in the retina
视网膜中的细胞类型和功能电路
基本信息
- 批准号:10672266
- 负责人:
- 金额:$ 39.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Amacrine CellsBrainCell physiologyCellsComplexDevelopmentElectrodesElectrophysiology (science)ExhibitsFunctional ImagingGeneticGenetic TechniquesGoalsImageIndividualInhibitory SynapseInner Plexiform LayerInterneuronsLabelLightMapsMeasuresMethodsMicroscopeMorphologyMusNamesNeuronsNeurosciencesOutputPlayPropertyResearchRetinaRetinal DiseasesRoleSchemeShapesSiteSpecificitySynapsesSystemTechniquesTechnologyTestingThinnessViralVisualWorkcell typedensitydesigndesigner receptors exclusively activated by designer drugsexperimental studyganglion cellgenetic technologyinsightmouse geneticsmultitaskneuralneurotransmitter releasenoveloptical imagingoptogeneticsorientation selectivitypostsynapticpostsynaptic neuronspresynapticpresynaptic neuronsreceptive fieldresponsespatiotemporalsynaptic inhibitiontooltwo-photonvisual processing
项目摘要
The long-term goal of this research is to understand the visual processing in the inner plexiform layer of the
retina. More immediately, the research serves to provide genetic access to distinct amacrine cell types for
functional characterization and to understand how they shape the response properties of ganglion cells.
Amacrine cells are the most diverse neurons in the retina, at least 40–50 morphological types have been
described. Each type of amacrine cells exhibits a unique morphology and generates specific visual
computations through their local circuits. Unfortunately, the great diversity of amacrine cells has been a major
obstacle to access individual cell types for systematic studies. As a result, the connectivity and function of
many amacrine cells remain unknown, and the development of genetic tools that allow for cell type-specific
targeting and manipulation would be an important step towards their characterization. We propose to use new
mouse intersectional genetic tools combined with functional imaging and electrophysiology recording to
morphologically and functionally dissect amacrine cell circuits in three separate Aims. In Aim 1, we will create
intersectional strategies by using a combination of Cre and tTA expression to discover new amacrine cell types
and to target these cells with increased specificity. After that, we will focus on a newly discovered amacrine cell
type called Ck2-AC1 for functional analysis. We will characterize the light responses of Ck2-AC1s by imaging
Ca2+ responses at the sites of neurotransmitter release in Aim 1, and then identify their post-synaptic ganglion
cells with intersectional ChR2 activation in Aim 2. In Aim 3, we will test specific hypotheses about Ck2-AC1s
and examine their functional roles in different circuits with chemogenetic inactivation. We will use both
hypothesis driven and discovery based approaches to gain insights into the circuit functions of Ck2-AC1s in the
inner retina. The intersectional strategy is extensible, and we will undoubted discover additional novel
amacrine cells and circuits utilizing the methods established for Ck2-AC1s. This work will advance our
understanding of visual processing in the inner retina while the technologies developed will provide major
advances over existing methods for studying amacrine cells and are also applicable to other brain circuits.
Furthermore, this project will provide insight into pathophysiological neuronal mechanisms of retinal diseases,
and help design better strategies for therapy.
本研究的长期目标是了解内丛状层的视觉加工,
视网膜。更直接的是,这项研究为人类提供了不同无长突细胞类型的遗传途径,
功能表征,并了解它们如何塑造神经节细胞的反应特性。
无长突细胞是视网膜中最多样化的神经元,至少有40-50种形态类型已被发现。
介绍了每种类型的无长突细胞都具有独特的形态,
通过本地电路进行计算。不幸的是,无长突细胞的巨大多样性一直是一个主要的
阻碍了获得用于系统研究的单个细胞类型。因此,
许多无长突细胞仍然是未知的,遗传工具的发展,允许细胞类型特异性
确定目标和操纵将是确定其特征的重要步骤。我们建议使用新的
结合功能成像和电生理记录的小鼠交叉遗传工具,
形态和功能解剖无长突细胞电路在三个独立的目的。在目标1中,我们将创建
通过使用Cre和tTA表达的组合来发现新的无长突细胞类型的交叉策略
并以更高的特异性靶向这些细胞。之后,我们将重点介绍一种新发现的无长突细胞
Ck 2-AC 1类型用于功能分析。我们将通过成像来表征Ck 2-AC 1的光响应
Aim 1神经递质释放部位的Ca ~(2+)反应,并鉴定其突触后神经节
Aim 2中交叉ChR 2激活的细胞。在目标3中,我们将测试关于Ck 2-AC 1的特定假设
并检查它们在化学发生失活的不同回路中的功能作用。我们将使用两者
假设驱动和发现为基础的方法,以获得深入了解Ck 2-AC 1的电路功能,
内层视网膜交叉策略是可扩展的,我们将努力发现更多的新颖性。
无长突细胞和电路,利用建立的Ck 2-AC 1的方法。这项工作将促进我们的
了解视网膜内部的视觉处理,而开发的技术将提供主要的
这是对现有无长突细胞研究方法的进步,也适用于其他脑回路。
此外,该项目将提供深入了解视网膜疾病的病理生理神经机制,
并帮助设计更好的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YONGLING ZHU其他文献
YONGLING ZHU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YONGLING ZHU', 18)}}的其他基金
Cell types and functional circuitry in the retina
视网膜中的细胞类型和功能电路
- 批准号:
10456763 - 财政年份:2019
- 资助金额:
$ 39.5万 - 项目类别:
Cell types and functional circuitry in the retina
视网膜中的细胞类型和功能电路
- 批准号:
10228742 - 财政年份:2019
- 资助金额:
$ 39.5万 - 项目类别:
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
- 批准号:
498289 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Operating Grants
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Discovery Early Career Researcher Award
How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
- 批准号:
DE240100614 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the mechanisms underlying the detrimental effects of NAFLD on the brain
了解 NAFLD 对大脑产生有害影响的机制
- 批准号:
MR/X033287/1 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Fellowship
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
- 批准号:
BB/Y005694/1 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Research Grant
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
- 批准号:
EP/X031403/1 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Research Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Standard Grant
Restoring Brain Plasticity through Sleep
通过睡眠恢复大脑可塑性
- 批准号:
24K09679 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Bioelectric mechanisms of brain development
职业:大脑发育的生物电机制
- 批准号:
2338239 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Continuing Grant
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Operating Grants














{{item.name}}会员




