Determination of structure, dynamics and energetics of enzyme reactions
酶反应的结构、动力学和能量学测定
基本信息
- 批准号:10672407
- 负责人:
- 金额:$ 32.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-hydroxy-3-methylglutaryl-coenzyme AAccelerationActive SitesAnti-Bacterial AgentsBiochemistryBiologicalBiologyBiophysicsCatalysisChemicalsCholesterolCodeCollaborationsCombined Modality TherapyCommunitiesComplexComputational BiologyComputing MethodologiesCouplesCouplingCrystallographyDataDeveloped CountriesDevelopmentDiseaseDrug TargetingEnzymatic BiochemistryEnzymesEquilibriumFree EnergyFreezingGoalsGrantHealthHumanHydroxymethylglutaryl-CoA reductaseKnowledgeLifeLinkMachine LearningMapsMethodologyMethodsModelingMolecularMolecular ConformationMovementMutagenesisNatureOxidoreductasePathway interactionsPharmaceutical PreparationsPositioning AttributeProcessProtein DynamicsProteinsPseudomonasPublic HealthReactionResearch PersonnelResolutionRoentgen RaysRoleRunningScienceStructureSystemTechniquesTimeValidationWorkbasebiophysical chemistrycofactorcomputer studiesdesignelectron densityenzyme mechanismexperienceexperimental studyimprovedinnovationmachine learning methodmillisecondmolecular dynamicsmolecular mechanicsmolecular scalemovienew therapeutic targetparticleprotein structurequantumsimulationstructural biologysynthetic biologytheoriestool
项目摘要
Project Summary
Understanding enzyme mechanisms is of paramount importance from both the basic biophysics perspective
of understanding life processes and the role of enzymes in diseases. To achieve a detailed understanding of
enzyme catalysis, the effects of protein structure and dynamics on the reaction energetics need to be elucidated.
We propose a combined computational and experimental approach that combines the synthetic, computational
and structural biology expertise of a team of investigators that has been working together for >15 years to create
a “molecular movie” where the position, movement and energy of every atom in the system followed over the
entire reaction pathway. The proposal exploits the emerging convergence of timescales accessible by molecular
simulation using GPUs and time resolved structural biology. Specific Aim 1 describes the simulation of the
complete reaction pathway of Pseudomonas mevalonii (Pm) HMGCoA Reductase (HMGR) and will use
transition state force fields (TSFFs) generated by the quantum guided molecular mechanics method to allow the
µsec MD simulations of the chemical steps. TSFFs not only circumvent the well-known boundary problem of
QM/MM, but are also 102-104 times faster. This allows a realistic modeling of the coupling of µsec dynamics and
catalysis that was demonstrated in the last grant period to be essential for understanding the reaction. Together
with accelerated MD simulations of the conformational changes involved in the reaction using standard force
fields, these computational studies cover the fsec to µsec timescale. In Specific Aim 2, the computational results
will be merged with the results of a three-tiered approach to obtain structural snapshots with progressively
increasing time resolution: (i) “Frozen” intermediates that map out the overall pathway on long timescales, (ii)
time resolved Laue crystallography using pH jump initiation on the msec timescale and (iii) use of photocaged
substrates to allow time resolved Laue experiments on the µsec timescale. This approach will be applied to the
study of HMGR, an enzyme of high biophysical and biomedical significance that has a complex reaction
mechanism involving three chemical steps, six large-scale conformational changes and two cofactor exchange
steps. The project is highly innovative because it (i) uses a combination of MD simulations using TSFFs and time
resolved crystallography to span timescales of at least 12 orders of magnitude, (ii) iteratively couples the Markov
State analysis of long timescale trajectories to the Singular Value Decomposition used to analyze time resolved
crystallography data, thus providing new tools to generate and experimentally validate trial structures (iii) applies
global optimization and machine learning techniques to allow the automated fitting of TSFFs for proteins, which
will enhance the application of this powerful method to other proteins and (iv) provides new photocaged
substrates for the study of enzyme mechanisms to the chemical biology community. All tool compounds,
methods and codes developed in this project will be made available to the scientific community.
项目摘要
了解酶的机制是至关重要的,从基础生物物理学的角度来看,
了解生命过程和酶在疾病中的作用。为了详细了解
酶催化,蛋白质结构和动力学对反应能量学的影响需要阐明。
我们提出了一种计算和实验相结合的方法,结合了合成,计算
和结构生物学专业知识的一个团队的研究人员,一直在一起工作了超过15年,创造
这是一部“分子电影”,系统中每个原子的位置、运动和能量都跟随着整个系统。
整个反应过程。该提案利用了分子生物学可访问的时间尺度的新兴收敛,
使用GPU和时间分辨结构生物学进行模拟。具体目标1描述了模拟
完整的反应途径的假单胞菌mevalonii(Pm)HMGCoA还原酶(HMGR),将使用
通过量子引导分子力学方法产生的过渡态力场(TSFF),
化学步骤的µsec MD模拟。TSFF不仅规避了众所周知的边界问题,
QM/MM,但也快102-104倍。这允许对微秒动态耦合进行真实建模,
在上一个资助期内,催化作用被证明是理解反应所必需的。一起
用标准力加速分子动力学模拟反应中的构象变化
场,这些计算研究涵盖了fsec到µsec的时间尺度。在具体目标2中,
将与三层方法的结果合并,以获得结构快照,
提高时间分辨率:(i)“冻结”中间体,在长时间尺度上绘制出整体路径,(ii)
时间分辨劳厄晶体学,使用毫秒时间尺度上的pH跳跃起始,和(iii)使用光笼
衬底,以允许在微秒时间尺度上进行时间分辨的劳厄实验。这种方法将适用于
研究HMGR,一种具有复杂反应的高生物物理和生物医学意义的酶
包括三个化学步骤,六个大规模构象变化和两个辅因子交换的机制
步该项目是高度创新的,因为它(i)使用了使用TSFF和时间的MD模拟的组合
解决晶体学跨越至少12个数量级的时间尺度,(ii)迭代耦合马尔可夫
长时间尺度轨道状态分析的奇异值分解用于时间分辨分析
晶体学数据,从而提供了新的工具,以产生和实验验证试验结构(iii)适用
全局优化和机器学习技术,允许自动拟合蛋白质的TSFF,
将增强这种强大的方法对其他蛋白质的应用,并(iv)提供新的光笼
酶机制研究的底物,以化学生物界。所有的工具化合物,
将向科学界提供在该项目中制定的方法和守则。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regioselective Alkylation of Pyridinium Riboses.
吡啶核糖的区域选择性烷基化。
- DOI:10.1002/ejoc.201901603
- 发表时间:2020
- 期刊:
- 影响因子:2.8
- 作者:Salahi,Farbod;Wiest,Olaf
- 通讯作者:Wiest,Olaf
Anomeric Effects in Sulfamides.
- DOI:10.1021/acs.jpca.6b02757
- 发表时间:2016-05-26
- 期刊:
- 影响因子:0
- 作者:Hansen E;Limé E;Norrby PO;Wiest O
- 通讯作者:Wiest O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OLAF G WIEST其他文献
OLAF G WIEST的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OLAF G WIEST', 18)}}的其他基金
Determination of structure, dynamics and energetics of enzyme reactions
酶反应的结构、动力学和能量学测定
- 批准号:
10266027 - 财政年份:2015
- 资助金额:
$ 32.16万 - 项目类别:
Determination of structure, dynamics and energetics of enzyme reactions
酶反应的结构、动力学和能量学测定
- 批准号:
8888788 - 财政年份:2015
- 资助金额:
$ 32.16万 - 项目类别:
Determination of structure, dynamics and energetics of enzyme reactions
酶反应的结构、动力学和能量学测定
- 批准号:
10456219 - 财政年份:2015
- 资助金额:
$ 32.16万 - 项目类别:
Determination of structure, dynamics and energetics of enzyme reactions
酶反应的结构、动力学和能量学测定
- 批准号:
9278009 - 财政年份:2015
- 资助金额:
$ 32.16万 - 项目类别:
Determination of structure, dynamics and energetics of enzyme reactions
酶反应的结构、动力学和能量学测定
- 批准号:
9897100 - 财政年份:2015
- 资助金额:
$ 32.16万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 32.16万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 32.16万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 32.16万 - 项目类别:
Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 32.16万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 32.16万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 32.16万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 32.16万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 32.16万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 32.16万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 32.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)