Mechanisms of Permeation and Gating of Voltage-Sensing Domains
电压传感域的渗透和门控机制
基本信息
- 批准号:10672274
- 负责人:
- 金额:$ 49.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAffinityAlberta provinceAlbuminsAnti-Inflammatory AgentsAntineoplastic AgentsBindingBinding SitesBiological AssayBiological ProcessBrain InjuriesBreast Cancer CellCalcium ChannelCell ProliferationCell physiologyCellsCollaborationsComplementComputing MethodologiesConsensusDevelopmentDiseaseDockingDrug TargetingElectrophysiology (science)EvaluationFamilyGeneticGoalsHL-60 CellsHealthHumanImmune responseIon Channel GatingIschemic StrokeKnock-outLigand BindingLigandsMalignant NeoplasmsMass Spectrum AnalysisMediatingMethodsModelingMolecularNeuroprotective AgentsNox enzymeOrganic SynthesisPeptidesPhagocytesPharmaceutical PreparationsPharmacologyPlayPotassium ChannelPreparationProductionProliferatingPropertyProteinsProtonsRecoveryReportingRespiratory BurstRoleSideSodium ChannelSpecificitySpinal cord injuryStructural ModelsStructureStudy modelsSystemToxinTransmembrane DomainTraumatic Brain InjuryUniversitiesVestibuleanalogantagonistanti-cancercancer cellcancer typecell motilitycrosslinkdesigndimerextracellularimprovedinfancyinhibitorlive cell imagingloss of functionmembermigrationmolecular dynamicsneuroinflammationneutrophilnovel therapeuticspH Homeostasispharmacologicrational designresponsescaffoldsimulationsmall moleculespinal cord and brain injurytoolvoltage
项目摘要
Project Summary
The voltage-gated proton channel Hv1 plays important roles in numerous biological processes, including
pH homeostasis and the immune response. Its activity has been found to worsen brain damage after
ischemic stroke, to exacerbate the effect of traumatic brain injury and spinal cord injury, and to increase
the metastatic potential of different types of cancer. The development of small-molecule modulators of
Hv1 activity could lead to new anti-inflammatory agents and anticancer drugs. In addition, Hv1
modulators can provide useful pharmacological tools for studying the function of the channel in health
and disease. Hv1 belongs to the large family of voltage-gated ion channels (VGICs). The majority of
these proteins consist of four voltage-sensing domains (VSDs) surrounding a central pore domain. While
many types of drugs bind the pore domain of VGICs, the number of organic molecules known to bind
VSDs is limited. The Hv1 channel is made of only two VSDs and does not contain a pore domain,
providing a simplified model for studying how ligands interact with VSDs. We have previously discovered
small molecules that inhibit Hv1 activity by binding within the intracellular vestibule of the channel VSD
in the open state (class I.1 ligands). Using a rational design approach that combines experimental and
computational methods, we identified related compounds that are able to bind the channel also in the
closed state (class I.2 ligands). Some of the new ligands display inhibitory properties that are superior
to those of class I.1 compounds and provide a promising scaffold for further development of high-affinity
Hv1 antagonists. However, little is known about how effective class I.2 ligands are at inhibiting Hv1-
regulated cellular processes, such as ROS production by NOX enzymes, or how specifically they target
the Hv1 VSD versus VSDs of other VGICs. In aim 1 of this project, we will apply our rational design
approach to develop I.2 ligands with improved potency and corresponding negative controls. We will
also use electrophysiological methods to investigate potential effects of Hv1 ligands on other members
of the VGIC family. In aim 2, we will utilize a variety of live cell imaging assays on wild type and Hv1
knockout cells to examine how I.2 ligands inhibit NOX-mediated ROS production in phagocytes and
how they affect proliferation and migration of cancer cells in a Hv1-dependent manner. The Hv1 channel
contains a VSD-VSD interface unique among VGICs. As a result, ligands that bind such interface are
expected to be more specific channel modulators than ligands that bind other transmembrane regions.
The structure of the Hv1 dimer has yet to be determined, and alternative dimer models have been
proposed by different groups with different VSD-VSD interfaces. In aim 3, we will use molecular
dynamics simulations combined with multichemistry cross-linking mass spectrometry to probe the
different models and derive a consensus dimer interface.
项目摘要
电压门控质子通道Hv 1在许多生物过程中起着重要作用,包括
pH稳态和免疫反应。它的活性被发现会加重脑损伤,
缺血性中风,加重创伤性脑损伤和脊髓损伤的影响,并增加
不同类型癌症的转移潜力。小分子药物的研究进展
hv 1的活性可能导致新的抗炎药和抗癌药。此外,Hv 1
调节剂可以提供有用的药理学工具,用于研究通道在健康中的功能
和疾病Hv 1属于电压门控离子通道(VGIC)大家族。大多数
这些蛋白质由围绕中心孔结构域的四个电压敏感结构域(VSD)组成。而
许多类型的药物结合VGIC的孔域,已知结合的有机分子的数量
VSD是有限的。Hv 1通道仅由两个VSD组成,不含孔结构域,
为研究配体如何与VSD相互作用提供了一个简化的模型。我们之前发现
通过结合在VSD通道的细胞内前庭内抑制Hv 1活性的小分子
在开放状态下(I.1类配体)。使用结合实验和
计算方法,我们确定了相关的化合物,能够结合通道,也在
封闭状态(I.2类配体)。一些新的配体显示出上级的抑制特性
I. 1类化合物的那些,并为进一步开发高亲和力的
Hv 1拮抗剂。然而,关于I.2类配体在抑制Hv 1-Hv 2方面的有效性知之甚少。
受调控的细胞过程,如NOX酶的ROS产生,或它们如何特异性靶向
Hv 1 VSD与其他VGIC的VSD。在本项目的目标1中,我们将应用我们的理性设计
开发具有改进的效力的I.2配体和相应的阴性对照的方法。我们将
我还使用电生理学方法研究Hv 1配体对其他成员的潜在影响
VGIC家族的成员。在目标2中,我们将利用野生型和Hv 1的多种活细胞成像测定,
敲除细胞以检查I.2配体如何抑制吞噬细胞中NOX介导的ROS产生,
它们如何以Hv 1依赖的方式影响癌细胞的增殖和迁移。Hv 1频道
包含VGIC中唯一的VSD-VSD接口。因此,结合这种界面的配体是
预期是比结合其它跨膜区的配体更特异的通道调节剂。
Hv 1二聚体的结构尚未确定,替代的二聚体模型已经被证实。
由不同的VSD-VSD接口的不同团体提出。在目标3中,我们将使用分子
动力学模拟结合多化学交联质谱来探测
不同的模型,并得出一个共识二聚体接口。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermodynamics and Mechanism of the Membrane Permeation of Hv1 Channel Blockers.
- DOI:10.1007/s00232-020-00149-8
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Lim VT;Freites JA;Tombola F;Tobias DJ
- 通讯作者:Tobias DJ
Allostery: A lipid two-step.
- DOI:10.1038/nchembio.2037
- 发表时间:2016-04
- 期刊:
- 影响因子:14.8
- 作者:Hong L;Tombola F
- 通讯作者:Tombola F
The Hv1 proton channel responds to mechanical stimuli.
- DOI:10.1085/jgp.201611672
- 发表时间:2016-11
- 期刊:
- 影响因子:0
- 作者:Pathak MM;Tran T;Hong L;Joós B;Morris CE;Tombola F
- 通讯作者:Tombola F
Mechanically-primed voltage-gated proton channels from angiosperm plants.
- DOI:10.1038/s41467-023-43280-5
- 发表时间:2023-11-18
- 期刊:
- 影响因子:16.6
- 作者:Zhao, Chang;Webster, Parker D.;De Angeli, Alexis;Tombola, Francesco
- 通讯作者:Tombola, Francesco
Voltage-sensing domain of voltage-gated proton channel Hv1 shares mechanism of block with pore domains.
- DOI:10.1016/j.neuron.2012.11.013
- 发表时间:2013-01-23
- 期刊:
- 影响因子:16.2
- 作者:Hong L;Pathak MM;Kim IH;Ta D;Tombola F
- 通讯作者:Tombola F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesco Tombola其他文献
Francesco Tombola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesco Tombola', 18)}}的其他基金
Stretch-activated ion channels in human neural stem cell mechanotransduction
人神经干细胞机械转导中的拉伸激活离子通道
- 批准号:
8997126 - 财政年份:2015
- 资助金额:
$ 49.88万 - 项目类别:
Stretch-activated ion channels in human neural stem cell mechanotransduction
人神经干细胞机械转导中的拉伸激活离子通道
- 批准号:
8893403 - 财政年份:2015
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of permeation and gating of voltage-sensing domains
电压传感域的渗透和门控机制
- 批准号:
8162229 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of Permeation and Gating of Voltage-Sensing Domains
电压传感域的渗透和门控机制
- 批准号:
9240299 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of permeation and gating of voltage-sensing domains
电压传感域的渗透和门控机制
- 批准号:
8694053 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of permeation and gating of voltage-sensing domains
电压传感域的渗透和门控机制
- 批准号:
8496834 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of Permeation and Gating of Voltage-Sensing Domains
电压传感域的渗透和门控机制
- 批准号:
10521947 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of permeation and gating of voltage-sensing domains
电压传感域的渗透和门控机制
- 批准号:
8290313 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of permeation and gating of voltage-sensing domains
电压传感域的渗透和门控机制
- 批准号:
8854101 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Continuing Grant














{{item.name}}会员




