Mechanisms of Permeation and Gating of Voltage-Sensing Domains
电压传感域的渗透和门控机制
基本信息
- 批准号:10672274
- 负责人:
- 金额:$ 49.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAffinityAlberta provinceAlbuminsAnti-Inflammatory AgentsAntineoplastic AgentsBindingBinding SitesBiological AssayBiological ProcessBrain InjuriesBreast Cancer CellCalcium ChannelCell ProliferationCell physiologyCellsCollaborationsComplementComputing MethodologiesConsensusDevelopmentDiseaseDockingDrug TargetingElectrophysiology (science)EvaluationFamilyGeneticGoalsHL-60 CellsHealthHumanImmune responseIon Channel GatingIschemic StrokeKnock-outLigand BindingLigandsMalignant NeoplasmsMass Spectrum AnalysisMediatingMethodsModelingMolecularNeuroprotective AgentsNox enzymeOrganic SynthesisPeptidesPhagocytesPharmaceutical PreparationsPharmacologyPlayPotassium ChannelPreparationProductionProliferatingPropertyProteinsProtonsRecoveryReportingRespiratory BurstRoleSideSodium ChannelSpecificitySpinal cord injuryStructural ModelsStructureStudy modelsSystemToxinTransmembrane DomainTraumatic Brain InjuryUniversitiesVestibuleanalogantagonistanti-cancercancer cellcancer typecell motilitycrosslinkdesigndimerextracellularimprovedinfancyinhibitorlive cell imagingloss of functionmembermigrationmolecular dynamicsneuroinflammationneutrophilnovel therapeuticspH Homeostasispharmacologicrational designresponsescaffoldsimulationsmall moleculespinal cord and brain injurytoolvoltage
项目摘要
Project Summary
The voltage-gated proton channel Hv1 plays important roles in numerous biological processes, including
pH homeostasis and the immune response. Its activity has been found to worsen brain damage after
ischemic stroke, to exacerbate the effect of traumatic brain injury and spinal cord injury, and to increase
the metastatic potential of different types of cancer. The development of small-molecule modulators of
Hv1 activity could lead to new anti-inflammatory agents and anticancer drugs. In addition, Hv1
modulators can provide useful pharmacological tools for studying the function of the channel in health
and disease. Hv1 belongs to the large family of voltage-gated ion channels (VGICs). The majority of
these proteins consist of four voltage-sensing domains (VSDs) surrounding a central pore domain. While
many types of drugs bind the pore domain of VGICs, the number of organic molecules known to bind
VSDs is limited. The Hv1 channel is made of only two VSDs and does not contain a pore domain,
providing a simplified model for studying how ligands interact with VSDs. We have previously discovered
small molecules that inhibit Hv1 activity by binding within the intracellular vestibule of the channel VSD
in the open state (class I.1 ligands). Using a rational design approach that combines experimental and
computational methods, we identified related compounds that are able to bind the channel also in the
closed state (class I.2 ligands). Some of the new ligands display inhibitory properties that are superior
to those of class I.1 compounds and provide a promising scaffold for further development of high-affinity
Hv1 antagonists. However, little is known about how effective class I.2 ligands are at inhibiting Hv1-
regulated cellular processes, such as ROS production by NOX enzymes, or how specifically they target
the Hv1 VSD versus VSDs of other VGICs. In aim 1 of this project, we will apply our rational design
approach to develop I.2 ligands with improved potency and corresponding negative controls. We will
also use electrophysiological methods to investigate potential effects of Hv1 ligands on other members
of the VGIC family. In aim 2, we will utilize a variety of live cell imaging assays on wild type and Hv1
knockout cells to examine how I.2 ligands inhibit NOX-mediated ROS production in phagocytes and
how they affect proliferation and migration of cancer cells in a Hv1-dependent manner. The Hv1 channel
contains a VSD-VSD interface unique among VGICs. As a result, ligands that bind such interface are
expected to be more specific channel modulators than ligands that bind other transmembrane regions.
The structure of the Hv1 dimer has yet to be determined, and alternative dimer models have been
proposed by different groups with different VSD-VSD interfaces. In aim 3, we will use molecular
dynamics simulations combined with multichemistry cross-linking mass spectrometry to probe the
different models and derive a consensus dimer interface.
项目总结
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermodynamics and Mechanism of the Membrane Permeation of Hv1 Channel Blockers.
- DOI:10.1007/s00232-020-00149-8
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Lim VT;Freites JA;Tombola F;Tobias DJ
- 通讯作者:Tobias DJ
Allostery: A lipid two-step.
- DOI:10.1038/nchembio.2037
- 发表时间:2016-04
- 期刊:
- 影响因子:14.8
- 作者:Hong L;Tombola F
- 通讯作者:Tombola F
The Hv1 proton channel responds to mechanical stimuli.
- DOI:10.1085/jgp.201611672
- 发表时间:2016-11
- 期刊:
- 影响因子:0
- 作者:Pathak MM;Tran T;Hong L;Joós B;Morris CE;Tombola F
- 通讯作者:Tombola F
Mechanically-primed voltage-gated proton channels from angiosperm plants.
- DOI:10.1038/s41467-023-43280-5
- 发表时间:2023-11-18
- 期刊:
- 影响因子:16.6
- 作者:Zhao, Chang;Webster, Parker D.;De Angeli, Alexis;Tombola, Francesco
- 通讯作者:Tombola, Francesco
Voltage-sensing domain of voltage-gated proton channel Hv1 shares mechanism of block with pore domains.
- DOI:10.1016/j.neuron.2012.11.013
- 发表时间:2013-01-23
- 期刊:
- 影响因子:16.2
- 作者:Hong L;Pathak MM;Kim IH;Ta D;Tombola F
- 通讯作者:Tombola F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesco Tombola其他文献
Francesco Tombola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesco Tombola', 18)}}的其他基金
Stretch-activated ion channels in human neural stem cell mechanotransduction
人神经干细胞机械转导中的拉伸激活离子通道
- 批准号:
8997126 - 财政年份:2015
- 资助金额:
$ 49.88万 - 项目类别:
Stretch-activated ion channels in human neural stem cell mechanotransduction
人神经干细胞机械转导中的拉伸激活离子通道
- 批准号:
8893403 - 财政年份:2015
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of permeation and gating of voltage-sensing domains
电压传感域的渗透和门控机制
- 批准号:
8162229 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of Permeation and Gating of Voltage-Sensing Domains
电压传感域的渗透和门控机制
- 批准号:
9240299 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of permeation and gating of voltage-sensing domains
电压传感域的渗透和门控机制
- 批准号:
8694053 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of permeation and gating of voltage-sensing domains
电压传感域的渗透和门控机制
- 批准号:
8496834 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of Permeation and Gating of Voltage-Sensing Domains
电压传感域的渗透和门控机制
- 批准号:
10521947 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of permeation and gating of voltage-sensing domains
电压传感域的渗透和门控机制
- 批准号:
8290313 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
Mechanisms of permeation and gating of voltage-sensing domains
电压传感域的渗透和门控机制
- 批准号:
8854101 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 49.88万 - 项目类别:
Continuing Grant














{{item.name}}会员




