Mechanisms of permeation and gating of voltage-sensing domains

电压传感域的渗透和门控机制

基本信息

  • 批准号:
    8496834
  • 负责人:
  • 金额:
    $ 27.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Voltage-sensing domains (VSDs) are transmembrane protein modules that detect electrical signals propagating within cell membranes. Ion channels and enzymes containing these domains play key roles in many biological processes, from the generation of the action potential in neurons and muscles, to the regulation of reactive oxygen species (ROS) during infection and inflammation. Malfunction or misexpression of VSD-containing proteins is associated with numerous diseases, such as epilepsy, periodic paralysis, cardiac arrhythmia, cancer and autoimmune disorders. Some VSDs conduct ions across the membrane under physiological conditions. Others become ion permeant under pathological conditions, as a result of mutations. The long-term goal of this study is to elucidate the mechanism underlying ion conduction through the VSD and its relationship to the general mechanism of voltage sensing. The study focuses on the voltage-gated proton channel Hv1, a protein that lacks the pore domain typical of voltage-gated sodium, potassium, and calcium channels and conducts protons through its VSD. Recent work has begun to unveil the structural organization of Hv1, but many open questions remain about the mechanisms of proton permeation, gating, and modulation of the channel. In this study we plan to answer some of these questions by using an approach that combines electrophysiological and fluorescence techniques to mutagenesis scanning and molecular dynamics simulations. Specifically, we aim at: 1) determining which parts of the VSD make up the proton pore and gate by using a novel technique of perturbation analysis recently developed in our laboratory, 2) exploring the relationship between the mechanism of proton permeation through the VSD and the mechanism of voltage sensing, using new Hv1 blockers as molecular probes, and 3) investigating the mechanisms of subunit coupling and gating modulation by accessory proteins. The proposed research will significantly expand our understanding of how VSDs sense the membrane potential, conduct ions, and interact with intracellular processes via accessory proteins. The work will also pave the way to the development of Hv1 inhibitors that can be used to address ROS overproduction typical of several cardiovascular and inflammatory disorders and will provide new insights on how mutations of VSDs lead to disease.
描述(由申请人提供):电压传感域(VSD)是跨膜蛋白模块,可检测细胞膜内传播的电信号。包含这些结构域的离子通道和酶在许多生物过程中发挥着关键作用,从神经元和肌肉中动作电位的产生,到感染和炎症期间活性氧 (ROS) 的调节。含有 VSD 的蛋白质的功能障碍或错误表达与许多疾病有关,例如癫痫、周期性麻痹、心律失常、癌症和自身免疫性疾病。一些 VSD 在生理条件下跨膜传导离子。由于突变,另一些在病理条件下变得离子渗透。本研究的长期目标是阐明通过 VSD 进行离子传导的机制及其与电压传感一般机制的关系。该研究重点关注电压门控质子通道 Hv1,这是一种缺乏电压门控钠、钾和钙通道典型孔结构域的蛋白质,可通过其 VSD 传导质子。最近的工作已经开始揭示 Hv1 的结构组织,但关于质子渗透、门控和通道调制的机制仍然存在许多悬而未决的问题。在这项研究中,我们计划通过使用一种将电生理学和荧光技术与诱变扫描和分子动力学模拟相结合的方法来回答其中一些问题。具体来说,我们的目标是:1)利用我们实验室最近开发的扰动分析新技术确定VSD的哪些部分构成质子孔和门,2)使用新的Hv1阻断剂作为分子探针,探索VSD的质子渗透机制与电压传感机制之间的关系,以及3)研究附件的亚基耦合和门控调制机制 蛋白质。拟议的研究将显着扩展我们对 VSD 如何感知膜电位、传导离子以及通过辅助蛋白与细胞内过程相互作用的理解。这项工作还将为 Hv1 抑制剂的开发铺平道路,该抑制剂可用于解决几种心血管和炎症性疾病中典型的 ROS 过量产生问题,并将提供有关 VSD 突变如何导致疾病的新见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francesco Tombola其他文献

Francesco Tombola的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francesco Tombola', 18)}}的其他基金

Stretch-activated ion channels in human neural stem cell mechanotransduction
人神经干细胞机械转导中的拉伸激活离子通道
  • 批准号:
    8997126
  • 财政年份:
    2015
  • 资助金额:
    $ 27.37万
  • 项目类别:
Stretch-activated ion channels in human neural stem cell mechanotransduction
人神经干细胞机械转导中的拉伸激活离子通道
  • 批准号:
    8893403
  • 财政年份:
    2015
  • 资助金额:
    $ 27.37万
  • 项目类别:
Mechanisms of Permeation and Gating of Voltage-Sensing Domains
电压传感域的渗透和门控机制
  • 批准号:
    10672274
  • 财政年份:
    2011
  • 资助金额:
    $ 27.37万
  • 项目类别:
Mechanisms of permeation and gating of voltage-sensing domains
电压传感域的渗透和门控机制
  • 批准号:
    8162229
  • 财政年份:
    2011
  • 资助金额:
    $ 27.37万
  • 项目类别:
Mechanisms of Permeation and Gating of Voltage-Sensing Domains
电压传感域的渗透和门控机制
  • 批准号:
    9240299
  • 财政年份:
    2011
  • 资助金额:
    $ 27.37万
  • 项目类别:
Mechanisms of permeation and gating of voltage-sensing domains
电压传感域的渗透和门控机制
  • 批准号:
    8694053
  • 财政年份:
    2011
  • 资助金额:
    $ 27.37万
  • 项目类别:
Mechanisms of Permeation and Gating of Voltage-Sensing Domains
电压传感域的渗透和门控机制
  • 批准号:
    10521947
  • 财政年份:
    2011
  • 资助金额:
    $ 27.37万
  • 项目类别:
Mechanisms of permeation and gating of voltage-sensing domains
电压传感域的渗透和门控机制
  • 批准号:
    8290313
  • 财政年份:
    2011
  • 资助金额:
    $ 27.37万
  • 项目类别:
Mechanisms of permeation and gating of voltage-sensing domains
电压传感域的渗透和门控机制
  • 批准号:
    8854101
  • 财政年份:
    2011
  • 资助金额:
    $ 27.37万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 27.37万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 27.37万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 27.37万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 27.37万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 27.37万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 27.37万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 27.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了