Mouse, Man, and Machine: Combining Model Systems to Develop a Biomarker for Cochlear Deafferentation in Humans (Administrative Supplement)
小鼠、人和机器:结合模型系统开发人类耳蜗传入神经阻滞的生物标志物(行政补充)
基本信息
- 批准号:10681110
- 负责人:
- 金额:$ 1.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Administrative SupplementAffectAgingAnimal ModelAuditoryAuditory Brainstem ResponsesBiological MarkersBiological ModelsCochleaComputer ModelsDataDeafferentation procedureDevelopmentDiagnosisDiagnostic testsHearing TestsHearing problemHistologicHumanHyperacusisIndividualInner Hair CellsKnowledgeLeadMeasurementMeasuresMethodsMissionMusOuter Hair CellsPeripheralPersonsPharmacotherapyPhysiologicalPrevalencePreventionPublic HealthReflex actionResearchRisk FactorsSpeech PerceptionSynapsesTestingTinnitusTranslationsUnited States National Institutes of HealthWorkbasecell injurydisabilityear muscleganglion cellhuman modelhuman subjectindividual patientinnovationmanmiddle earnoise exposureotoacoustic emissionpreventresearch clinical testingresponsespiral ganglion
项目摘要
Project Summary
Clinical testing for peripheral auditory dysfunction focuses on the audiogram. However, many auditory perceptual
deficits, such as tinnitus, hyperacusis, and difficulty with speech perception, cannot be fully explained by the
audiogram. Cochlear deafferentation (i.e., loss of inner hair cells, spiral ganglion cells, or cochlear synapses),
may contribute to these perceptual problems. However, there is currently no method for diagnosing
deafferentation in living humans. This prevents us from determining the prevalence of deafferentation in humans,
identifying deafferentation risk factors and perceptual consequences, or testing potential drug treatments.
Several non-invasive physiological measures are sensitive to loss of cochlear synapses (a form of
deafferentation) in animal models, including the auditory brainstem response (ABR), the envelope following
response (EFR), and the middle ear muscle reflex (MEMR). However, it is unclear how cochlear gain loss (e.g.,
due to outer hair cell damage) impacts the relationship between deafferentation and these physiological
measures, hindering translation to a diagnostic test for deafferentation. The overall objective of this proposal is
to develop a computational model that can estimate deafferentation from non-invasive physiological
measurements in humans with varying degrees of cochlear gain loss. The central hypothesis is that cochlear
gain loss can be predicted from distortion product otoacoustic emissions (DPOAEs) and deafferentation can be
predicted from a combination of ABR, EFR, and MEMR measurements. This hypothesis will be tested by
pursuing four specific aims: 1) Expand a computational model of the auditory periphery (CMAP) to predict ABR,
EFR, MEMR, and DPOAE responses in mice and humans based on both cochlear gain and afferent function, 2)
Validate and refine the CMAP by collecting physiological and histological data from mouse, 3) Predict
deafferentation in individual human subjects from physiological measurements by fitting the CMAP using
Bayesian regression, and 4) Evaluate deafferentation predictions for their relationship with risk factors and
predicted perceptual consequences of deafferentation. This approach is innovative because it extends prior work
to animal and human models with both cochlear gain loss and deafferentation, uses computational modeling to
bridge the gap between model systems, and combines multiple physiological measurements to predict
deafferentation in individual human subjects. The proposed research is significant because we currently have
no means of diagnosing deafferentation. Thus, the prevalence, associated risk factors, and perceptual impacts
of this condition are unclear. This project is expected to result in a biomarker of deafferentation for individual
patients that is based on their physiological measurements. This will enable us to identify peripheral auditory
damage that is independent of cochlear gain loss. If the biomarker is correlated with risk factors such as noise
exposure and auditory perceptual deficits such as speech perception difficulty, it will allow for the development
of targeted treatments for auditory perceptual deficits and strategies for damage prevention.
项目摘要
外周听觉功能障碍的临床测试集中在听力图上。然而,许多听觉感知
缺陷,如耳鸣,听觉过敏,和言语知觉困难,不能完全解释的,
听力图耳蜗传入神经阻滞(即,内毛细胞、螺旋神经节细胞或耳蜗突触的丧失),
可能会导致这些感知问题。然而,目前还没有诊断方法
在活人身上的感觉缺失这使我们无法确定人类中传入神经阻滞的患病率,
识别传入神经阻滞的风险因素和知觉后果,或测试潜在的药物治疗。
几种非侵入性生理测量对耳蜗突触(耳蜗突触的一种形式)的丧失敏感。
在动物模型中,包括听觉脑干反应(ABR),
中耳反射(MEMR)。然而,尚不清楚耳蜗增益损失(例如,
由于外毛细胞损伤)影响传入神经阻滞和这些生理
措施,阻碍翻译为一个诊断测试的传入神经阻滞。本建议的总体目标是
开发一个计算模型,可以估计来自非侵入性生理的传入神经阻滞,
在具有不同程度的耳蜗增益损失的人类中的测量。核心假设是耳蜗
增益损失可以从失真产物耳声发射(DPOAE)中预测,并且传入神经阻滞可以通过
根据ABR、EFR和MEMR测量的组合预测。这一假设将由以下人员进行检验:
追求四个具体目标:1)扩展听觉外周(CMAP)的计算模型以预测ABR,
基于耳蜗增益和传入功能的小鼠和人类EFR、MEMR和DPOAE反应,2)
通过收集小鼠的生理和组织学数据,对CMAP进行了验证和改进,
通过使用以下方法拟合CMAP,从生理测量中获得个体人类受试者的传入阻滞
贝叶斯回归,以及4)评估传入神经阻滞预测与风险因素的关系,以及
预测了传入神经阻滞的感知后果。这种方法是创新的,因为它扩展了以前的工作
动物和人类模型与耳蜗增益损失和deafferentation,使用计算建模,
弥合模型系统之间的差距,并结合多种生理测量来预测
个体受试者的传入神经阻滞。这项研究意义重大,因为我们目前有
无法诊断出是否有传入神经阻滞因此,患病率,相关的风险因素和感知影响
这种情况还不清楚。该项目预计将导致个体的传入神经阻滞的生物标志物
这是基于患者的生理测量。这将使我们能够识别周边听觉
与耳蜗增益损失无关的损伤。如果生物标志物与噪音等风险因素相关,
暴露和听觉知觉缺陷,如言语知觉困难,它将允许发展
听觉感知缺陷的靶向治疗和损伤预防策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naomi Bramhall其他文献
Naomi Bramhall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Naomi Bramhall', 18)}}的其他基金
Mouse, Man, and Machine: Combining Model Systems to Develop a Biomarker for Cochlear Deafferentation in Humans
小鼠、人和机器:结合模型系统开发人类耳蜗传入神经阻滞的生物标志物
- 批准号:
10666638 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Resolving the Paradox of Hearing Complaints with a Normal Audiogram: Differential Diagnosis and Perceptual Impacts of Cochlear Deafferentation
用正常听力图解决听力投诉的悖论:耳蜗传入神经阻滞的鉴别诊断和知觉影响
- 批准号:
10596630 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Resolving the Paradox of Hearing Complaints with a Normal Audiogram: Differential Diagnosis and Perceptual Impacts of Cochlear Deafferentation
用正常听力图解决听力投诉的悖论:耳蜗传入神经阻滞的鉴别诊断和知觉影响
- 批准号:
10424840 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Noise-Induced Cochlear Neuronal Degeneration and Its Perceptual Consequences
噪声引起的耳蜗神经元变性及其感知后果
- 批准号:
8781370 - 财政年份:2014
- 资助金额:
$ 1.48万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 1.48万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 1.48万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 1.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 1.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 1.48万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 1.48万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 1.48万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 1.48万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 1.48万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 1.48万 - 项目类别: