Antibiotic Model-Informed Precision Dosing in Critical Illness
危重疾病中抗生素模型知情的精确剂量
基本信息
- 批准号:10673735
- 负责人:
- 金额:$ 39.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAnti-Bacterial AgentsAntibioticsClinicalCritical IllnessDangerousnessDataDiseaseDoseDrug KineticsElectronic Health RecordEnsureFoundationsFrequenciesIndividualIntensive Care UnitsKnowledgeModelingMorbidity - disease rateOdds RatioOutcomePatient AdmissionPatientsPharmaceutical PreparationsPharmacodynamicsPhysiologicalPopulationPublic HealthPublishingRegimenResearchResourcesRiskTherapeutic InterventionTimeToxic effectbactericidebeta-Lactamscostimprovedimproved outcomeindividual patientinnovationmodel buildingmodels and simulationmortalitynephrotoxicityneurotoxicitypatient populationpersonalized approachprecision medicineprogramsprospectivesupport toolstool
项目摘要
PROJECT SUMMARY
Pathophysiologic changes during critical illness can affect drug pharmacokinetics (PK, how the body
affects the drug) and pharmacodynamics (PD, how the drug affects the body), but the current paradigm of drug
dosing is a standard “one-size-fits-all” approach, rather than a personalized approach. Emerging data in adults
demonstrate increased risk of morbidity and mortality with standard doses of antibiotics in critically ill patients
due to lack of PD target attainment. β-lactam antibiotics are a prime example of drugs demonstrating high PK
and PD variability in critically ill patients. Thus, critically ill patients are at risk of having low antibiotic exposures
leading to ineffective bactericidal activity or high antibiotic exposures resulting in toxicity. By using real-time
drug concentrations, individual patient and disease factors, and population PK models, model-informed
precision dosing (MIPD) can ensure adequate antibiotic exposure while avoiding toxicity.
My proposed research program will address three critical knowledge gaps that are necessary to fill prior to
implementation of antibiotic MIPD. First, the appropriate patient populations who will most benefit from
precision dosing remain unknown. Implementation of MIPD for every patient admitted to the intensive care unit
may be resource-intensive and costly. However, simply increasing antibiotic doses or frequency of
administration without data-driven management can be dangerous as it carries risks for antibiotic-associated
toxicity, including nephrotoxicity and neurotoxicity. Therefore, it is critical to optimize the benefit-to-risk ratio of
therapeutic interventions for individual patients, a fundamental concept of precision medicine. Second, there
remains a knowledge gap on the association of precision dosing of antibiotics and clinical outcomes. Studies
examining antibiotic exposure and outcomes in adults have had mixed results; some show improved outcomes
with PD target attainment and some show no difference in outcomes with regards to target attainment. Third,
many of the antibiotic population PK models needed for MIPD have not been prospectively validated in
critically ill patients, so it is unknown which models should be used for precision dosing. To address these
knowledge gaps, Project 1 will utilize innovative modeling and simulation to identify patient and disease
factors associated with antibiotic under-exposure (risk of ineffective antibacterial activity) or over-exposure (risk
of toxicity) and investigate mechanisms underlying toxicities. Project 2 will investigate the effect of precision
dosing on clinical outcomes by evaluating the association between PD target attainment and clinical outcomes
at the individual level. Project 3 will prospectively validate our models and previously published models to
ensure accurate predictive ability in critically ill patients. With these prospectively validated models, we will lay
the foundation to build MIPD decision support tools integrated with the electronic health record to generate
individual patient PK and PD profiles for precision dosing in critically ill patients. These tools will be essential to
implement antibiotic MIPD to guide clinicians in dosing regimen selection for critically ill patients.
项目摘要
危重病期间的病理生理变化可影响药物药代动力学(PK,身体如何
影响药物)和药效学(PD,药物如何影响身体),但目前的药物
剂量是标准的“一刀切”方法,而不是个性化方法。成人新兴数据
证明危重患者使用标准剂量抗生素的发病率和死亡率风险增加
由于缺乏PD目标实现。β-内酰胺抗生素是表现出高PK的药物的主要例子
和PD变异性。因此,重症患者存在抗生素暴露水平低的风险
导致无效的杀菌活性或导致毒性的高抗生素暴露。通过使用实时
药物浓度、个体患者和疾病因素以及群体PK模型,模型知情
精确给药(MIPD)可以确保足够的抗生素暴露,同时避免毒性。
我提议的研究计划将解决三个关键的知识差距,这些差距是在
实施抗生素MIPD。首先,最能受益于
精确剂量仍然未知。为每一位入住重症监护室的患者实施MIPD
可能是资源密集型和昂贵的。然而,仅仅增加抗生素剂量或频率,
没有数据驱动管理的管理可能是危险的,因为它会给与数据相关的
毒性,包括肾毒性和神经毒性。因此,关键是要优化受益风险比,
针对个体患者的治疗干预是精准医疗的基本概念。二是
关于抗生素精确剂量与临床结果之间的关系,仍然存在知识空白。研究
检查成人的抗生素暴露和结果有不同的结果;有些结果显示改善
与PD目标实现有关,有些人在目标实现方面的结果没有差异。第三、
MIPD所需的许多抗生素群体PK模型尚未在
危重患者,因此不知道应使用哪种模型进行精确给药。解决这些
知识差距,项目1将利用创新的建模和模拟来识别患者和疾病
与抗生素暴露不足(抗菌活性无效的风险)或过度暴露(风险)相关的因素
毒性),并研究潜在的毒性机制。项目2将研究精度的影响
通过评价PD目标实现与临床结局之间的相关性,确定给药对临床结局的影响
在个人层面上。项目3将前瞻性地验证我们的模型和以前发布的模型,
确保对重症患者的准确预测能力。有了这些前瞻性验证的模型,我们将奠定
建立与电子健康记录集成的MIPD决策支持工具的基础,
危重患者精确给药的个体患者PK和PD特征。这些工具将是必不可少的,
实施抗生素MIPD,指导临床医生为危重患者选择给药方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sonya C Tang Girdwood其他文献
Sonya C Tang Girdwood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




