Capturing structure and dynamics of transmembrane signaling proteins
捕获跨膜信号蛋白的结构和动态
基本信息
- 批准号:10673717
- 负责人:
- 金额:$ 30.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:BindingBiologyCell Signaling ProcessCell membraneCellsCellular MembraneCharacteristicsChemicalsClinicalCommunitiesCompetenceComplexComputer softwareComputing MethodologiesCrystallographyCytoplasmDataDevelopmentDiabetes MellitusDimerizationDiseaseEntropyEnvironmentExtracellular DomainFGFR3 geneFamilyFluorescence Resonance Energy TransferFree EnergyFutureGoalsHealthHumanHuman DevelopmentInflammationIntegral Membrane ProteinInvestigationLabelLigand BindingLipidsLiquid substanceMalignant NeoplasmsMeasurementMeasuresMembraneMethodologyMethodsModelingMolecularMolecular ConformationMutateMutationNaturePathogenicityPathologyPathway interactionsPhosphotransferasesPlayPlug-inPoint MutationPositioning AttributeProtein FamilyProtocols documentationReceptor ActivationReceptor Protein-Tyrosine KinasesResearchResearch PersonnelResolutionRoleSignal TransductionSignaling ProteinStructureTechniquesTimeTransmembrane DomainTropomyosinValidationVesicleVisualizationcomputer studiesdimerempowermentexperimental studygain of functionimprovedinsightmethod developmentmimeticsmutantnovelopen sourcepreventreceptorresponserestraintsimulationsingle moleculesolid state nuclear magnetic resonancetherapy developmenttransmission processuser-friendly
项目摘要
Project Summary
To sense the environment, cells rely on membrane-embedded receptors. The receptor tyrosine kinase (RTK)
family of signaling proteins is large, diverse, and centrally important both to human development diseases and
cancers. Evidence so far supports a model that signal passage through RTKs is initiated by a structural change
in the extracellular domain and then conducted through the transmembrane (TMD) and juxtamembrane (JMD)
domains to the cytoplasmic kinase domain. The receptors usually are activated in the dimer form. Numerous
RTK mutations confer diseases, e.g. single point mutations in ~30% of residues of the TMD of the fibroblast
growth factor receptor 3 (FGFR3) are pathogenic, while mutations of tropomyosin receptor kinase A can lead
to cancers. Understanding the structural interactions of the FGFR3 and TrkA signaling TMD and JMD therefore
is crucial for fundamental biology and for future development of therapies that may target these pathways.
Atomistically resolved TMD+JMD dimer structures are the major objective of this project. Application of
traditional computational and crystallographic methods is hindered by the fluid nature of the membrane
environment. Our goal is to develop novel efficient computational methods that guide and maximally leverage
NMR, FRET, and in-cell experimental data and apply these methods to capture the FGFR3 and TrkA TMD and
TMD+JMD dimer structures for the wild type and mutated pathogenic forms. In Aim 1, we will combine our
novel highly mobile membrane mimetic model, capable of spontaneously capturing candidate TMD dimer
structures, with a novel minimally biased way of applying a reduced number of computational restraints based
on experimental distance measurements. The resulting TMD dimer structures will be validated by comparing
computed and experimentally measured parameters. These structures will reveal the role mutations play in
RTK dynamics. In Aim 2, we will use our computational-experimental approach to determine the role that
juxtamembrane domains play in RTK signaling. The resolved structures of the mutated dimers will facilitate
understanding of the pathology and mechanisms of receptor activation. Our novel computational approaches
combined with extended expertise of co-investigators and collaborators in NMR, FRET, RTK signaling, and
membrane-associated phenomena, uniquely position us to develop and apply this methodology. We will also
develop an open-source, user friendly workflow plugin for a widely-used software suite that will allow efficient
use of the proposed protocols by the scientific community. Completion of the specific aims will increase our
ability to efficiently gain structural information on RTKs and will open new research avenues for investigating
mechanisms of transmembrane signaling in health and disease leading to development of new treatments.
项目摘要
为了感知环境,细胞依赖于膜嵌入受体。受体酪氨酸激酶(RTK)
信号蛋白家族是大的,多样的,并且对人类发育疾病和
癌的到目前为止的证据支持一个模型,即通过RTK的信号通道是由结构变化启动的
在细胞外结构域,然后通过跨膜(TMD)和跨膜(JMD)进行,
结构域到胞质激酶结构域。受体通常以二聚体形式被激活。许多
RTK突变导致疾病,例如成纤维细胞TMD的~30%残基中的单点突变
生长因子受体3(FGFR 3)是致病性的,而原肌球蛋白受体激酶A的突变可导致
到癌症因此,理解FGFR 3和TrkA信号转导TMD和JMD的结构相互作用
对于基础生物学和未来可能针对这些途径的疗法的发展至关重要。
原子分辨的TMD+JMD二聚体结构是本项目的主要目标。的应用
传统的计算和晶体学方法受到膜的流体性质的阻碍
环境我们的目标是开发新的有效的计算方法,指导和最大限度地利用
NMR、FRET和细胞内实验数据,并应用这些方法捕获FGFR 3和TrkA TMD,
野生型和突变的致病形式的TMD+JMD二聚体结构。在目标1中,我们将联合收割机
新型高移动的膜模拟模型,能够自发捕获候选TMD二聚体
结构,与一种新的最小偏置的方式,应用减少数量的计算约束的基础上,
实验性的距离测量所得TMD二聚体结构将通过比较
计算和实验测量的参数。这些结构将揭示突变在
RTK动力学在目标2中,我们将使用我们的计算-实验方法来确定
近膜结构域在RTK信号传导中发挥作用。突变的二聚体的解析结构将促进
了解受体激活的病理学和机制。我们新颖的计算方法
结合合作研究者和合作者在NMR、FRET、RTK信号传导和
膜相关的现象,独特的定位我们开发和应用这种方法。我们还将
为广泛使用的软件套件开发一个开源的、用户友好的工作流程插件,
科学界使用拟议的议定书。具体目标的完成将提高我们的
能够有效地获得结构信息的RTK,并将开辟新的研究途径,调查
健康和疾病中的跨膜信号传导机制导致新治疗方法的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taras V. Pogorelov其他文献
Membrane composition affects binding and insertion of the influenza virus fusion peptide
- DOI:
10.1016/j.bpj.2023.11.2003 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Melanie A. Brunet;Mary L. Kraft;Taras V. Pogorelov - 通讯作者:
Taras V. Pogorelov
Life in the cytoplasm: Computational microscope captures in-cell molecular dynamics
- DOI:
10.1016/j.bpj.2023.11.2044 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Premila P. Samuel;Martin Gruebele;Taras V. Pogorelov - 通讯作者:
Taras V. Pogorelov
The L920F EphA4 Oncogenic Mutation Alters the SAM Domain Fold and Induces EphA4 Oligomerization
- DOI:
10.1016/j.bpj.2020.11.2075 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Taylor P. Light;Zichen Wang;Kelly Karl;Elmer A. Zapata-Mercado;Taras V. Pogorelov;Jeffrey J. Gray;Kalina Hristova - 通讯作者:
Kalina Hristova
Charachterizing Structure and Dynamics of Calcium-Induced Clusters of Phosphatidylserine in Mixed Lipid Bilayers
- DOI:
10.1016/j.bpj.2010.12.1164 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Taras V. Pogorelov;Y. Zenmei Ohkubo;Mark J. Arcario;Emad Tajkhorshid - 通讯作者:
Emad Tajkhorshid
Efficient sampling of TrkA transmembrane domain dimerization captures functionally distinct structural ensembles
- DOI:
10.1016/j.bpj.2022.11.1199 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Zichen Wang;Taras V. Pogorelov - 通讯作者:
Taras V. Pogorelov
Taras V. Pogorelov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taras V. Pogorelov', 18)}}的其他基金
Capturing structure and dynamics of transmembrane signaling proteins
捕获跨膜信号蛋白的结构和动态
- 批准号:
10367643 - 财政年份:2021
- 资助金额:
$ 30.84万 - 项目类别:
Capturing structure and dynamics of transmembrane signaling proteins
捕获跨膜信号蛋白的结构和动态
- 批准号:
10491306 - 财政年份:2021
- 资助金额:
$ 30.84万 - 项目类别:
Capturing structure and dynamics of transmembrane signaling proteins
捕获跨膜信号蛋白的结构和动态
- 批准号:
10582241 - 财政年份:2021
- 资助金额:
$ 30.84万 - 项目类别:
相似国自然基金
Journal of Integrative Plant Biology
- 批准号:31024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: Hybridization and radiation: Integrating across phylogenomics, ancestral niche evolution, and pollination biology
职业:杂交和辐射:系统基因组学、祖先生态位进化和授粉生物学的整合
- 批准号:
2337784 - 财政年份:2024
- 资助金额:
$ 30.84万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: STEMEdIPRF: Understanding instructor and student concepts of race to measure the prevalence of race essentialism in biology education
博士后奖学金:STEMEdIPRF:了解教师和学生的种族概念,以衡量生物教育中种族本质主义的流行程度
- 批准号:
2327488 - 财政年份:2024
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant
Conference: 2024 Mammalian Synthetic Biology Workshop
会议:2024年哺乳动物合成生物学研讨会
- 批准号:
2412586 - 财政年份:2024
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant
Conference: Travel Grant for the 28th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2024)
会议:第 28 届计算分子生物学研究国际会议 (RECOMB 2024) 旅费补助
- 批准号:
2414575 - 财政年份:2024
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Summer Undergraduate Research Program in RNA and Genome Biology (REU-RGB)
合作研究:REU 网站:RNA 和基因组生物学暑期本科生研究计划 (REU-RGB)
- 批准号:
2349255 - 财政年份:2024
- 资助金额:
$ 30.84万 - 项目类别:
Continuing Grant
REU Site: Nature's machinery through the prism of Physics, Biology, Chemistry and Engineering
REU 网站:通过物理、生物、化学和工程学的棱镜观察自然的机器
- 批准号:
2349368 - 财政年份:2024
- 资助金额:
$ 30.84万 - 项目类别:
Standard Grant
Biology Meets Engineering: Expanding Transdisciplinary STEM Education
生物学与工程学的结合:扩展跨学科 STEM 教育
- 批准号:
2342578 - 财政年份:2024
- 资助金额:
$ 30.84万 - 项目类别:
Continuing Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
- 批准号:
2305609 - 财政年份:2024
- 资助金额:
$ 30.84万 - 项目类别:
Fellowship Award
NSF Postdoctoral Fellowship in Biology: Chironomid Bioturbation at Future High Temperature Scenarios and its Effect on Nutrient Fluxes and Bacterial Activity
NSF 生物学博士后奖学金:未来高温场景下的摇蚊生物扰动及其对营养通量和细菌活性的影响
- 批准号:
2305738 - 财政年份:2024
- 资助金额:
$ 30.84万 - 项目类别:
Fellowship Award
NSF Postdoctoral Fellowship in Biology: Understanding the role of dietary toxins in shaping microbial community dynamics in the gut
NSF 生物学博士后奖学金:了解膳食毒素在塑造肠道微生物群落动态中的作用
- 批准号:
2305735 - 财政年份:2024
- 资助金额:
$ 30.84万 - 项目类别:
Fellowship Award














{{item.name}}会员




