Capturing structure and dynamics of transmembrane signaling proteins
捕获跨膜信号蛋白的结构和动态
基本信息
- 批准号:10582241
- 负责人:
- 金额:$ 11.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AwardBiologyCellsCommunitiesComputer softwareComputing MethodologiesDataDevelopmentDiabetes MellitusDiseaseEnvironmentExtracellular DomainFGFR3 geneFamilyFluorescence Resonance Energy TransferFundingFutureGoalsHealthHuman DevelopmentInflammationLeadLiquid substanceMalignant NeoplasmsMeasurementMeasuresMembraneMethodologyMethodsModelingMutateMutationNaturePathogenicityPathologyPathway interactionsPhosphotransferasesPlayPoint MutationPositioning AttributeProtocols documentationReceptor ActivationReceptor Protein-Tyrosine KinasesResearchResearch PersonnelRoleSignal TransductionSignaling ProteinStructureTropomyosinbasedimerimprovedmimeticsnovelopen sourcereceptorrestrainttherapy developmentuser-friendly
项目摘要
Project Summary of the Funded Award (R01GM141298)
To sense the environment, cells rely on membrane-embedded receptors. The receptor tyrosine
kinase (RTK) family of signaling proteins is large, diverse, and centrally important both to human
development diseases and cancers. Evidence so far supports a model that signal passage
through RTKs is initiated by a structural change in the extracellular domain and then conducted
through the transmembrane (TMD) and juxtamembrane (JMD) domains to the cytoplasmic kinase
domain. The receptors usually are activated in the dimer form. Numerous RTK mutations confer
diseases, e.g. single point mutations in ~30% of residues of the TMD of the fibroblast growth
factor receptor 3 (FGFR3) are pathogenic, while mutations of tropomyosin receptor kinase A can
lead to cancers. Understanding the structural interactions of the FGFR3 and TrkA signaling TMD
and JMD therefore is crucial for fundamental biology and for future development of therapies that
may target these pathways. Atomistically resolved TMD+JMD dimer structures are the major
objective of this project. Application of traditional computational and crystallographic methods is
hindered by the fluid nature of the membrane environment. Our goal is to develop novel efficient
computational methods that guide and maximally leverage NMR, FRET, and in-cell experimental
data and apply these methods to capture the FGFR3 and TrkA TMD and TMD+JMD dimer
structures for the wild type and mutated pathogenic forms. In Aim 1, we will combine our novel
highly mobile membrane mimetic model, capable of spontaneously capturing candidate TMD
dimer structures, with a novel minimally biased way of applying a reduced number of
computational restraints based on experimental distance measurements. The resulting TMD
dimer structures will be validated by comparing computed and experimentally measured
parameters. These structures will reveal the role mutations play in RTK dynamics. In Aim 2, we
will use our computational-experimental approach to determine the role that juxtamembrane
domains play in RTK signaling. The resolved structures of the mutated dimers will facilitate
understanding of the pathology and mechanisms of receptor activation. Our novel computational
approaches combined with extended expertise of co-investigators and collaborators in NMR,
FRET, RTK signaling, and membrane-associated phenomena, uniquely position us to develop
and apply this methodology. We will also develop an open-source, user friendly workflow plugin
for a widely-used software suite that will allow efficient use of the proposed protocols by the
scientific community. Completion of the specific aims will increase our ability to efficiently gain
structural information on RTKs and will open new research avenues for investigating mechanisms
of transmembrane signaling in health and disease leading to development of new treatments.
资助奖项目摘要(R 01 GM 141298)
为了感知环境,细胞依赖于膜嵌入受体。受体酪氨酸
信号蛋白激酶(RTK)家族是一个庞大的、多样的、对人类神经系统和神经系统都非常重要的信号蛋白家族。
发育疾病和癌症。迄今为止的证据支持一种模型,
通过RTK是由胞外结构域的结构变化引发的,然后进行
通过跨膜(TMD)和跨膜(JMD)结构域到胞质激酶
域受体通常以二聚体形式被激活。许多RTK突变赋予
疾病,例如成纤维细胞生长的TMD的~30%残基中的单点突变
因子受体3(FGFR 3)是致病性的,而原肌球蛋白受体激酶A的突变可以
导致癌症。了解FGFR 3和TrkA信号转导TMD的结构相互作用
因此,JMD对于基础生物学和未来治疗的发展至关重要,
可以针对这些途径。原子分辨的TMD+JMD二聚体结构是主要的
该项目的目标。传统的计算和晶体学方法的应用,
受到膜环境的流体性质的阻碍。我们的目标是开发新型高效的
指导和最大限度地利用NMR,FRET和细胞内实验的计算方法
数据并应用这些方法捕获FGFR 3和TrkA TMD和TMD+JMD二聚体
野生型和突变的致病形式的结构。在目标1中,我们将联合收割机
高度移动的膜模拟模型,能够自发捕获候选TMD
二聚体结构,与一种新的最小偏置的方式,应用减少数量的
基于实验距离测量的计算限制。由此产生的TMD
二聚体结构将通过比较计算值和实验测量值来验证
参数这些结构将揭示突变在RTK动力学中的作用。在目标2中,
将使用我们的计算-实验方法来确定细胞膜的作用,
域在RTK信令中起作用。突变的二聚体的解析结构将促进
了解受体激活的病理学和机制。我们的新型计算
方法与合作研究者和合作者在NMR方面的扩展专业知识相结合,
FRET,RTK信号和膜相关现象,使我们能够开发
并应用这种方法。我们还将开发一个开源的,用户友好的工作流程插件
一个广泛使用的软件套件,将允许有效地使用拟议的协议,
科学界。具体目标的完成将提高我们的能力,
RTKs的结构信息,并将为调查机制开辟新的研究途径
跨膜信号在健康和疾病中的作用,导致新的治疗方法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taras V. Pogorelov其他文献
Life in the cytoplasm: Computational microscope captures in-cell molecular dynamics
- DOI:
10.1016/j.bpj.2023.11.2044 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Premila P. Samuel;Martin Gruebele;Taras V. Pogorelov - 通讯作者:
Taras V. Pogorelov
The L920F EphA4 Oncogenic Mutation Alters the SAM Domain Fold and Induces EphA4 Oligomerization
- DOI:
10.1016/j.bpj.2020.11.2075 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Taylor P. Light;Zichen Wang;Kelly Karl;Elmer A. Zapata-Mercado;Taras V. Pogorelov;Jeffrey J. Gray;Kalina Hristova - 通讯作者:
Kalina Hristova
Membrane composition affects binding and insertion of the influenza virus fusion peptide
- DOI:
10.1016/j.bpj.2023.11.2003 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Melanie A. Brunet;Mary L. Kraft;Taras V. Pogorelov - 通讯作者:
Taras V. Pogorelov
Charachterizing Structure and Dynamics of Calcium-Induced Clusters of Phosphatidylserine in Mixed Lipid Bilayers
- DOI:
10.1016/j.bpj.2010.12.1164 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Taras V. Pogorelov;Y. Zenmei Ohkubo;Mark J. Arcario;Emad Tajkhorshid - 通讯作者:
Emad Tajkhorshid
Efficient sampling of TrkA transmembrane domain dimerization captures functionally distinct structural ensembles
- DOI:
10.1016/j.bpj.2022.11.1199 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Zichen Wang;Taras V. Pogorelov - 通讯作者:
Taras V. Pogorelov
Taras V. Pogorelov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taras V. Pogorelov', 18)}}的其他基金
Capturing structure and dynamics of transmembrane signaling proteins
捕获跨膜信号蛋白的结构和动态
- 批准号:
10367643 - 财政年份:2021
- 资助金额:
$ 11.32万 - 项目类别:
Capturing structure and dynamics of transmembrane signaling proteins
捕获跨膜信号蛋白的结构和动态
- 批准号:
10491306 - 财政年份:2021
- 资助金额:
$ 11.32万 - 项目类别:
Capturing structure and dynamics of transmembrane signaling proteins
捕获跨膜信号蛋白的结构和动态
- 批准号:
10673717 - 财政年份:2021
- 资助金额:
$ 11.32万 - 项目类别:
相似国自然基金
Journal of Integrative Plant Biology
- 批准号:31024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Autoantibodies and antibody-secreting cells in neurological autoimmune diseases: from biology to therapy
神经性自身免疫性疾病中的自身抗体和抗体分泌细胞:从生物学到治疗
- 批准号:
479128 - 财政年份:2023
- 资助金额:
$ 11.32万 - 项目类别:
Operating Grants
Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Lung Diseases
肺生物学和肺部疾病中的干细胞、细胞疗法和生物工程
- 批准号:
10753310 - 财政年份:2023
- 资助金额:
$ 11.32万 - 项目类别:
Decoding and reprogramming T cells through synthetic biology for cancer immunotherapy
通过合成生物学解码和重编程 T 细胞用于癌症免疫治疗
- 批准号:
10568704 - 财政年份:2023
- 资助金额:
$ 11.32万 - 项目类别:
Quantitative systems biology of glioblastoma cells and their interactions with the neuronal and immunological milieu
胶质母细胞瘤细胞的定量系统生物学及其与神经元和免疫环境的相互作用
- 批准号:
10729273 - 财政年份:2023
- 资助金额:
$ 11.32万 - 项目类别:
Conference: Stem Cells, Cell Therapy and Bioengineering in Lung Biology and Diseases 2023
会议:肺生物学和疾病中的干细胞、细胞治疗和生物工程 2023
- 批准号:
2327935 - 财政年份:2023
- 资助金额:
$ 11.32万 - 项目类别:
Standard Grant
Development of Innovative Fat Transplantation Based on Single Cell Analysis and Computational Biology of Subcutaneous Adipose Tissue-Derived Cells
基于皮下脂肪组织来源细胞的单细胞分析和计算生物学的创新脂肪移植的发展
- 批准号:
22H03246 - 财政年份:2022
- 资助金额:
$ 11.32万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Expanding retinal regenerative potential through chromatin biology in single cells
通过单细胞染色质生物学扩大视网膜再生潜力
- 批准号:
10463028 - 财政年份:2022
- 资助金额:
$ 11.32万 - 项目类别:
Biology of Submucosal Gland Stem Cells in the Airway
气道粘膜下腺干细胞的生物学
- 批准号:
10516449 - 财政年份:2022
- 资助金额:
$ 11.32万 - 项目类别:
A Long Path to Power: combining bioengineering, stem cells and cell biology to uncover the mysteries of axonal biology
权力之路漫漫:结合生物工程、干细胞和细胞生物学,揭开轴突生物学的奥秘
- 批准号:
2723028 - 财政年份:2022
- 资助金额:
$ 11.32万 - 项目类别:
Studentship
Society for Basic Urology Research 2022 Fall Meeting: Complex Cells, Systems and Regulatory Pathways In Urologic Biology
基础泌尿学研究学会 2022 年秋季会议:泌尿生物学中的复杂细胞、系统和调节途径
- 批准号:
10609175 - 财政年份:2022
- 资助金额:
$ 11.32万 - 项目类别:














{{item.name}}会员




