Closed-Loop Systems for Large Scale Spatiotemporal Imaging and Actuation of Neural Activity in Freely Behaving Animals
用于自由行为动物的大规模时空成像和神经活动激活的闭环系统
基本信息
- 批准号:10675440
- 负责人:
- 金额:$ 66.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdoptionAnimal ExperimentsAnimalsAreaAutomobile DrivingBehaviorBehavior ControlBehavioralBrainCellsCommunitiesComplexDataDetectionDevelopmentDevicesEducational workshopEquipmentEventFeedbackFoundationsGenerationsGoalsGrainHeadHippocampusImageInvestigationKnowledgeLearningLightLightingLinkMeasuresMemoryMethodologyMicroscopeMusNeuronsNeurophysiology - biologic functionNeurosciencesNeurosciences ResearchNucleus AccumbensOperative Surgical ProceduresOpticsPatternPersonsProcessProtocols documentationRattusReadingResearch PersonnelRoleSamplingSiteSliceSocial InteractionSource CodeStructureSystemTechniquesTechnologyTestingTimeTrainingWorkWritingawakedesigndesign,build,testdetection platformexperienceexperimental studyimage processingimprovedin vivo evaluationinnovationneuralneural circuitneural networkneurobehavioralneuroimagingnovelonline resourceopen sourceopen source toolprocess optimizationprototypespatiotemporaltoolwiki
项目摘要
ABSTRACT
A major challenge in neuroscience is to uncover how defined neural circuits in the brain encode, store, modify, and retrieve information. Adding to this challenge is the fact that neural function does not operate in isolation but rather within living, behaving animals. Great technological advances over the past decades have allowed researchers to begin to optically measure and modulate neural activity but these approaches are often limited to head-fix animals when studying neural function at spatial and temporal scales relevant to internal neural circuit dynamics. While a great deal of scientific and technological progress has been made, there is still much to learn concerning complex neural function, especially within the context of natural behavior. This knowledge gap, at least in part, is due to a lack of accessible tools for simultaneously modulating and observing large-scale neural circuits with single-cell precision in freely behaving animals. This project will fill this gap by developing open-source, head-mounted miniature microscopes with spatiotemporal illumination capabilities for both patterned photo-stimulation and improved neural imaging in freely behaving animals. We will develop a modular control and acquisition platform for native integration of neural and behavioral equipment to facilitate neural-behavioral experiments. Finally, this platform will be driven by a novel, automated, closed-loop processing framework for detecting, decoding, and manipulating neural and behavioral dynamics in real-time. The goal of this platform is to 1) significantly extend and improve upon current freely behaving neural imaging and modulation techniques and 2) provide an integrated framework for observing, controlling, and manipulating neural dynamics within the context of behavior. This approach has the potential to simultaneously “read” from and “write” into, potentially, any area of the brain, enabling fine-grained investigation of the causal role between neural activity and behavior. Our development will be guided by concurrent benchtop and in vivo testing at every stage of the development and optimization process. To maximize the impact of our efforts, all tools and technologies developed for this proposal will be open-source and shared widely with the scientific community through online resources and technical workshops.
摘要
神经科学的一个主要挑战是揭示大脑中定义的神经回路如何编码,存储,修改和检索信息。增加这一挑战的是,神经功能不是孤立地运作,而是在活着的、有行为的动物体内运作。在过去的几十年里,巨大的技术进步使研究人员开始光学测量和调节神经活动,但这些方法往往局限于头部固定动物在空间和时间尺度上研究神经功能相关的内部神经回路动力学。虽然科学和技术已经取得了很大的进步,但关于复杂的神经功能,特别是在自然行为的背景下,仍然有很多东西需要学习。这种知识差距,至少在一定程度上是由于缺乏可访问的工具来同时调节和观察自由行为动物中具有单细胞精度的大规模神经回路。该项目将通过开发开源的头戴式微型显微镜来填补这一空白,该显微镜具有时空照明能力,可用于图案化光刺激和改善自由行为动物的神经成像。我们将开发一个模块化的控制和采集平台,用于神经和行为设备的本地集成,以促进神经行为实验。最后,该平台将由一个新颖的自动化闭环处理框架驱动,用于实时检测、解码和操纵神经和行为动态。该平台的目标是:1)显著扩展和改进当前自由行为神经成像和调制技术; 2)提供一个在行为背景下观察、控制和操纵神经动力学的集成框架。这种方法有可能同时从大脑的任何区域“读取”和“写入”,从而能够对神经活动和行为之间的因果关系进行细粒度的调查。在开发和优化过程的每个阶段,我们的开发将以并行的实验室和体内测试为指导。为了最大限度地发挥我们的努力的影响,为这项提案开发的所有工具和技术都将是开源的,并通过在线资源和技术研讨会与科学界广泛分享。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Aharoni其他文献
Daniel Aharoni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Aharoni', 18)}}的其他基金
Open-source miniaturized two-photon microscopes for large field-of-view and volumetric imaging
用于大视场和体积成像的开源小型双光子显微镜
- 批准号:
10516900 - 财政年份:2022
- 资助金额:
$ 66.52万 - 项目类别:
Open-source miniaturized two-photon microscopes for large field-of-view and volumetric imaging
用于大视场和体积成像的开源小型双光子显微镜
- 批准号:
10675751 - 财政年份:2022
- 资助金额:
$ 66.52万 - 项目类别:
Closed-Loop Systems for Large Scale Spatiotemporal Imaging and Actuation of Neural Activity in Freely Behaving Animals
用于自由行为动物的大规模时空成像和神经活动激活的闭环系统
- 批准号:
10401560 - 财政年份:2022
- 资助金额:
$ 66.52万 - 项目类别:
Developing long-term neuro-behavioral recording and real-time processing platforms for naturally behaving animals
为自然行为动物开发长期神经行为记录和实时处理平台
- 批准号:
10245927 - 财政年份:2021
- 资助金额:
$ 66.52万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 66.52万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 66.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 66.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 66.52万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 66.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 66.52万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 66.52万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 66.52万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 66.52万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 66.52万 - 项目类别:
Standard Grant