Towards Precise Phenotype Discovery of Obstructive Sleep Apnea with a Data-Inclusive Multi-Study Analysis Using the National Sleep Research Resource (NSRR)

使用国家睡眠研究资源 (NSRR) 通过包含数据的多项研究分析来精确发现阻塞性睡眠呼吸暂停的表型

基本信息

  • 批准号:
    10675011
  • 负责人:
  • 金额:
    $ 11.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Obstructive sleep apnea (OSA) is highly prevalent and associated with a spectrum of cardiovascular (CV) diseases and adverse health outcomes. However, OSA treatment strategies tend to show inconsistent treatment efficacy across individuals and little or no reduction in risk of CV diseases, events, or death. Phenotype discovery is critical for precise risk stratification and targeted treatment of OSA. Substantial heterogeneity among OSA patients is likely an important contributor to the suboptimal results of clinical trials. Thus, it is critical to delineate the OSA heterogeneity and stratify patients into high-vs low-risk clusters (i.e., “phenotypes”) associated with markedly different outcomes for precise risk stratification and targeted treatment. OSA data hold great promise to facilitate OSA phenotype discovery. Rigor of Prior Research: (1) We and others identified new prognostic factors in OSA data that are associated with one or more adverse CV outcomes. (2) Emerging OSA phenotypes were defined by machine learning and clustering algorithms from multi-faceted OSA data. (3) Newly identified OSA phenotypes, predictive of patients’ benefit from OSA treatments and risk for adverse CV outcomes, laid the foundation for OSA phenotypes’ clinical utility in targeted treatment and precise prognosis. However, significant gaps exist in fully leveraging the OSA data for phenotype discovery: There is a lack of “outcome-predictive”, “clinically-interpretable”, and “reproducible” phenotypes, defined from multi-domain OSA data in a large diverse U.S. population. To address these gaps, we propose a secondary multi-study analysis that seeks to develop new classification criteria and identify phenotypes in OSA by integrating multi-domain OSA-related sleep common data elements, including but not limited to patient socio-demographics, health habits, medical history, anthropometrics, polysomnography measures, daytime sleepiness, quality of life, and cardiovascular comorbidities and mortalities, combined across three of the largest epidemiological study cohorts deposited in the NIH-funded National Sleep Research Resource (NSRR). This includes Sleep Heart Health Study, Hispanic Community Health Study, and Multi-Ethnic Study of Atherosclerosis, with at least 5,336 OSA patients from a diverse population of African American, Caucasian, Hispanic, and Asian American men and women. Aim 1: Develop a novel sparse, outcome-predictive multi-domain Factor Mixture Model for OSA phenotype identification from multi-domain mixed-typed patient pre-clinical features and clinical features. Aim 2: Apply the developed model in Aim 1 to individual and pooled NSRR datasets to: (1) identify, characterize, and validate OSA phenotypes; (2) evaluate consistency and reproducibility in findings supported by individual and pooled analyses. Impact: We will identify, characterize, and validate OSA phenotypes that assist clinicians with determining how aggressive to be with the treatment plans and assist researchers with selecting appropriate patients to enroll in clinical trials of OSA treatment, eventually leading to precise prognosis and treatment of OSA.
项目摘要/摘要 阻塞性睡眠呼吸暂停(OSA)非常普遍,并与一系列心血管疾病相关 (Cv)疾病和不良健康后果。然而,阻塞性睡眠呼吸暂停综合征的治疗策略往往表现出不一致 治疗对个人有效,心血管疾病、事件或死亡的风险很少或根本没有降低。 表型发现对于OSA的精确风险分层和靶向治疗至关重要。相当可观 阻塞性睡眠呼吸暂停综合征患者的异质性可能是临床试验结果不佳的重要原因。 因此,关键是要描述OSA的异质性,并将患者分成高风险与低风险组(即, “表型”)与精确风险分层和靶向治疗的显著不同结果相关。 OSA数据在促进OSA表型发现方面大有可为。前期研究的严谨性:(1)我们 其他人在OSA数据中发现了与一个或多个不良简历相关的新的预后因素 结果。(2)通过机器学习和聚类算法对OSA表型进行了定义 多方面的OSA数据。(3)新发现的OSA表型,预测患者受益于OSA 治疗和不良心血管结局的风险,为OSA表型在靶向的临床应用奠定了基础 治疗和准确的预后。然而,在充分利用OSA数据方面存在着重大差距 表型发现:缺乏“结果预测性”、“临床可解释性”和“可重复性”。 表型,根据大量不同美国人群的多域OSA数据定义。 为了解决这些差距,我们提出了一个次要的多项研究分析,试图开发新的 通过整合多领域OSA相关睡眠共同特征来确定OSA的分类标准和表型 数据元素,包括但不限于患者的社会人口统计、健康习惯、病史、 人体测量学、多导睡眠图测量、日间嗜睡、生活质量和心血管 三个最大的流行病学研究队列的合并症和死亡率,存放在 NIH资助的国家睡眠研究资源(NSRR)。这包括睡眠心脏健康研究,西班牙裔 社区健康研究和动脉粥样硬化的多种族研究,至少有5336名OSA患者来自 非裔美国人、高加索人、西班牙人和亚裔美国人的不同人群。 目的1:建立一种新的OSA表型稀疏、预测结果的多域因素混合模型 从多个领域辨别混合型患者的临床前特征和临床特征。目标2:应用 在目标1中为单独和汇集的NSRR数据集开发了模型,以:(1)识别、表征和验证 OSA表型;(2)评估由个人和集合支持的研究结果的一致性和重复性 分析。影响:我们将识别、表征和验证OSA表型,以帮助临床医生 确定治疗计划的积极程度,并协助研究人员选择合适的治疗方案 患者参加OSA治疗的临床试验,最终导致OSA的准确预后和治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bing Si其他文献

Bing Si的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bing Si', 18)}}的其他基金

Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
  • 批准号:
    10639360
  • 财政年份:
    2023
  • 资助金额:
    $ 11.43万
  • 项目类别:
Sleep and Cardiometabolic Health in United States Hispanic/Latino Late Adolescents/Young Adults
美国西班牙裔/拉丁裔晚期青少年/年轻人的睡眠和心脏代谢健康
  • 批准号:
    10432438
  • 财政年份:
    2022
  • 资助金额:
    $ 11.43万
  • 项目类别:
Sleep and Cardiometabolic Health in United States Hispanic/Latino Late Adolescents/Young Adults
美国西班牙裔/拉丁裔晚期青少年/年轻人的睡眠和心脏代谢健康
  • 批准号:
    10636884
  • 财政年份:
    2022
  • 资助金额:
    $ 11.43万
  • 项目类别:
Towards Precise Phenotype Discovery of Obstructive Sleep Apnea with a Data-Inclusive Multi-Study Analysis Using the National Sleep Research Resource (NSRR)
使用国家睡眠研究资源 (NSRR) 通过包含数据的多项研究分析来精确发现阻塞性睡眠呼吸暂停的表型
  • 批准号:
    10516409
  • 财政年份:
    2022
  • 资助金额:
    $ 11.43万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了