Towards Precise Phenotype Discovery of Obstructive Sleep Apnea with a Data-Inclusive Multi-Study Analysis Using the National Sleep Research Resource (NSRR)

使用国家睡眠研究资源 (NSRR) 通过包含数据的多项研究分析来精确发现阻塞性睡眠呼吸暂停的表型

基本信息

  • 批准号:
    10675011
  • 负责人:
  • 金额:
    $ 11.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Obstructive sleep apnea (OSA) is highly prevalent and associated with a spectrum of cardiovascular (CV) diseases and adverse health outcomes. However, OSA treatment strategies tend to show inconsistent treatment efficacy across individuals and little or no reduction in risk of CV diseases, events, or death. Phenotype discovery is critical for precise risk stratification and targeted treatment of OSA. Substantial heterogeneity among OSA patients is likely an important contributor to the suboptimal results of clinical trials. Thus, it is critical to delineate the OSA heterogeneity and stratify patients into high-vs low-risk clusters (i.e., “phenotypes”) associated with markedly different outcomes for precise risk stratification and targeted treatment. OSA data hold great promise to facilitate OSA phenotype discovery. Rigor of Prior Research: (1) We and others identified new prognostic factors in OSA data that are associated with one or more adverse CV outcomes. (2) Emerging OSA phenotypes were defined by machine learning and clustering algorithms from multi-faceted OSA data. (3) Newly identified OSA phenotypes, predictive of patients’ benefit from OSA treatments and risk for adverse CV outcomes, laid the foundation for OSA phenotypes’ clinical utility in targeted treatment and precise prognosis. However, significant gaps exist in fully leveraging the OSA data for phenotype discovery: There is a lack of “outcome-predictive”, “clinically-interpretable”, and “reproducible” phenotypes, defined from multi-domain OSA data in a large diverse U.S. population. To address these gaps, we propose a secondary multi-study analysis that seeks to develop new classification criteria and identify phenotypes in OSA by integrating multi-domain OSA-related sleep common data elements, including but not limited to patient socio-demographics, health habits, medical history, anthropometrics, polysomnography measures, daytime sleepiness, quality of life, and cardiovascular comorbidities and mortalities, combined across three of the largest epidemiological study cohorts deposited in the NIH-funded National Sleep Research Resource (NSRR). This includes Sleep Heart Health Study, Hispanic Community Health Study, and Multi-Ethnic Study of Atherosclerosis, with at least 5,336 OSA patients from a diverse population of African American, Caucasian, Hispanic, and Asian American men and women. Aim 1: Develop a novel sparse, outcome-predictive multi-domain Factor Mixture Model for OSA phenotype identification from multi-domain mixed-typed patient pre-clinical features and clinical features. Aim 2: Apply the developed model in Aim 1 to individual and pooled NSRR datasets to: (1) identify, characterize, and validate OSA phenotypes; (2) evaluate consistency and reproducibility in findings supported by individual and pooled analyses. Impact: We will identify, characterize, and validate OSA phenotypes that assist clinicians with determining how aggressive to be with the treatment plans and assist researchers with selecting appropriate patients to enroll in clinical trials of OSA treatment, eventually leading to precise prognosis and treatment of OSA.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bing Si其他文献

Bing Si的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bing Si', 18)}}的其他基金

Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
  • 批准号:
    10639360
  • 财政年份:
    2023
  • 资助金额:
    $ 11.43万
  • 项目类别:
Sleep and Cardiometabolic Health in United States Hispanic/Latino Late Adolescents/Young Adults
美国西班牙裔/拉丁裔晚期青少年/年轻人的睡眠和心脏代谢健康
  • 批准号:
    10432438
  • 财政年份:
    2022
  • 资助金额:
    $ 11.43万
  • 项目类别:
Sleep and Cardiometabolic Health in United States Hispanic/Latino Late Adolescents/Young Adults
美国西班牙裔/拉丁裔晚期青少年/年轻人的睡眠和心脏代谢健康
  • 批准号:
    10636884
  • 财政年份:
    2022
  • 资助金额:
    $ 11.43万
  • 项目类别:
Towards Precise Phenotype Discovery of Obstructive Sleep Apnea with a Data-Inclusive Multi-Study Analysis Using the National Sleep Research Resource (NSRR)
使用国家睡眠研究资源 (NSRR) 通过包含数据的多项研究分析来精确发现阻塞性睡眠呼吸暂停的表型
  • 批准号:
    10516409
  • 财政年份:
    2022
  • 资助金额:
    $ 11.43万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 11.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了