Towards Precise Phenotype Discovery of Obstructive Sleep Apnea with a Data-Inclusive Multi-Study Analysis Using the National Sleep Research Resource (NSRR)
使用国家睡眠研究资源 (NSRR) 通过包含数据的多项研究分析来精确发现阻塞性睡眠呼吸暂停的表型
基本信息
- 批准号:10675011
- 负责人:
- 金额:$ 11.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAfrican American populationAlgorithmsApneaAsian AmericansBenefits and RisksBlack AmericanBlack PopulationsCardiac healthCardiovascular DiseasesCardiovascular systemCategoriesCessation of lifeClassificationClinicalClinical ResearchClinical TreatmentClinical TrialsCohort StudiesCollectionCommon Data ElementDataData ElementData SetDepositionDrowsinessEnrollmentEventFoundationsFundingGoalsHabitsHealthHeterogeneityHispanic AmericansHispanic Community Health StudyIndividualMachine LearningMapsMeasuresMedical HistoryModelingMulti-Ethnic Study of AtherosclerosisObstructive Sleep ApneaOutcomePatient-Focused OutcomesPatientsPhenotypePolysomnographyPopulationPopulation HeterogeneityPrognosisPrognostic FactorQuality of lifeReproducibilityResearchResearch PersonnelResourcesRiskSeveritiesSleepSleep Apnea SyndromesStratificationTestingTreatment EfficacyUnited States National Institutes of HealthWomancardiovascular disorder riskcardiovascular risk factorcaucasian Americanclinical applicationclinical phenotypeclinical practicecohortcommunity health studycomorbiditycostdemographicsdesignempowermentepidemiology studyimprovedinclusion criteriaindexingindividual patientinsightmenmiddle agemortalitynoveloutcome predictionpatient stratificationphenotypic datapre-clinicalpredict clinical outcomeprognosticationprospectiverisk stratificationsecondary analysissociodemographicstargeted treatmenttreatment planningtreatment strategyvalidation studies
项目摘要
Project Summary/Abstract
Obstructive sleep apnea (OSA) is highly prevalent and associated with a spectrum of cardiovascular
(CV) diseases and adverse health outcomes. However, OSA treatment strategies tend to show inconsistent
treatment efficacy across individuals and little or no reduction in risk of CV diseases, events, or death.
Phenotype discovery is critical for precise risk stratification and targeted treatment of OSA. Substantial
heterogeneity among OSA patients is likely an important contributor to the suboptimal results of clinical trials.
Thus, it is critical to delineate the OSA heterogeneity and stratify patients into high-vs low-risk clusters (i.e.,
“phenotypes”) associated with markedly different outcomes for precise risk stratification and targeted treatment.
OSA data hold great promise to facilitate OSA phenotype discovery. Rigor of Prior Research: (1) We
and others identified new prognostic factors in OSA data that are associated with one or more adverse CV
outcomes. (2) Emerging OSA phenotypes were defined by machine learning and clustering algorithms from
multi-faceted OSA data. (3) Newly identified OSA phenotypes, predictive of patients’ benefit from OSA
treatments and risk for adverse CV outcomes, laid the foundation for OSA phenotypes’ clinical utility in targeted
treatment and precise prognosis. However, significant gaps exist in fully leveraging the OSA data for
phenotype discovery: There is a lack of “outcome-predictive”, “clinically-interpretable”, and “reproducible”
phenotypes, defined from multi-domain OSA data in a large diverse U.S. population.
To address these gaps, we propose a secondary multi-study analysis that seeks to develop new
classification criteria and identify phenotypes in OSA by integrating multi-domain OSA-related sleep common
data elements, including but not limited to patient socio-demographics, health habits, medical history,
anthropometrics, polysomnography measures, daytime sleepiness, quality of life, and cardiovascular
comorbidities and mortalities, combined across three of the largest epidemiological study cohorts deposited in
the NIH-funded National Sleep Research Resource (NSRR). This includes Sleep Heart Health Study, Hispanic
Community Health Study, and Multi-Ethnic Study of Atherosclerosis, with at least 5,336 OSA patients from a
diverse population of African American, Caucasian, Hispanic, and Asian American men and women.
Aim 1: Develop a novel sparse, outcome-predictive multi-domain Factor Mixture Model for OSA phenotype
identification from multi-domain mixed-typed patient pre-clinical features and clinical features. Aim 2: Apply the
developed model in Aim 1 to individual and pooled NSRR datasets to: (1) identify, characterize, and validate
OSA phenotypes; (2) evaluate consistency and reproducibility in findings supported by individual and pooled
analyses. Impact: We will identify, characterize, and validate OSA phenotypes that assist clinicians with
determining how aggressive to be with the treatment plans and assist researchers with selecting appropriate
patients to enroll in clinical trials of OSA treatment, eventually leading to precise prognosis and treatment of OSA.
项目总结/摘要
阻塞性睡眠呼吸暂停(OSA)是一种非常普遍的疾病,与一系列心血管疾病有关。
(CV)疾病和不良健康后果。然而,OSA的治疗策略往往表现出不一致的
个体间的治疗疗效,CV疾病、事件或死亡风险几乎没有或没有降低。
表型发现对于OSA的精确风险分层和靶向治疗至关重要。实质性
OSA患者之间的异质性可能是临床试验的次优结果的重要因素。
因此,描述阻塞性睡眠呼吸暂停综合征的异质性并将患者分层为高风险和低风险集群(即,
表型)与精确风险分层和靶向治疗的显著不同结果相关。
OSA数据对促进OSA表型发现具有很大的希望。先前研究的严谨性:(1)我们
其他人在OSA数据中发现了与一种或多种不良CV相关的新预后因素
结果。(2)新出现的OSA表型是通过机器学习和聚类算法定义的,
多方面的OSA数据。(3)新发现的OSA表型,可预测患者从OSA中获益
治疗和不良CV结局的风险,为OSA表型在靶向治疗中的临床应用奠定了基础。
治疗和准确的预后。然而,在充分利用OSA数据以
表型发现:缺乏“结果预测性”、“临床可解释性”和“可重现性”
表型,定义从多域OSA数据在一个大的不同的美国人口。
为了解决这些差距,我们提出了一个二级多研究分析,旨在开发新的
分类标准和确定表型在OSA通过整合多域OSA相关的睡眠共同
数据元素,包括但不限于患者社会人口统计学、健康习惯、病史,
人体测量、多导睡眠图测量、日间嗜睡、生活质量和心血管
合并症和死亡率,合并了三个最大的流行病学研究队列
国家睡眠研究资源(NSRR)这包括睡眠心脏健康研究,西班牙裔
社区健康研究和动脉粥样硬化的多种族研究,至少有5,336名OSA患者,
非裔美国人、高加索人、西班牙裔和亚裔美国人男性和女性的多元化人口。
目的1:建立一种新的稀疏的、可预测结果的OSA表型多域因子混合模型
从多领域混合型患者临床前特征和临床特征中识别。目标2:应用
在目标1中开发了针对单个和合并NSRR数据集的模型,以:(1)识别、表征和验证
OSA表型;(2)评价个体和汇总支持的结果的一致性和重现性
分析。影响:我们将识别,表征和验证OSA表型,帮助临床医生
确定如何积极与治疗计划,并协助研究人员选择适当的
患者参加OSA治疗的临床试验,最终导致OSA的精确预后和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bing Si其他文献
Bing Si的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bing Si', 18)}}的其他基金
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 11.43万 - 项目类别:
Sleep and Cardiometabolic Health in United States Hispanic/Latino Late Adolescents/Young Adults
美国西班牙裔/拉丁裔晚期青少年/年轻人的睡眠和心脏代谢健康
- 批准号:
10432438 - 财政年份:2022
- 资助金额:
$ 11.43万 - 项目类别:
Sleep and Cardiometabolic Health in United States Hispanic/Latino Late Adolescents/Young Adults
美国西班牙裔/拉丁裔晚期青少年/年轻人的睡眠和心脏代谢健康
- 批准号:
10636884 - 财政年份:2022
- 资助金额:
$ 11.43万 - 项目类别:
Towards Precise Phenotype Discovery of Obstructive Sleep Apnea with a Data-Inclusive Multi-Study Analysis Using the National Sleep Research Resource (NSRR)
使用国家睡眠研究资源 (NSRR) 通过包含数据的多项研究分析来精确发现阻塞性睡眠呼吸暂停的表型
- 批准号:
10516409 - 财政年份:2022
- 资助金额:
$ 11.43万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 11.43万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 11.43万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 11.43万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 11.43万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 11.43万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 11.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 11.43万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 11.43万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 11.43万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 11.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists