Disease Progression Modeling of Bladder Cancer
膀胱癌的疾病进展模型
基本信息
- 批准号:10674950
- 负责人:
- 金额:$ 48.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAneuploidyAnimalsBackBioinformaticsBiologicalBreast Cancer ModelCancer DiagnosticsCancer ModelCause of DeathCessation of lifeCharacteristicsClassificationClinicalClinical ManagementClinical Trials DesignCommunitiesComplexDataData SetDerivation procedureDevelopmentDiagnosticDiseaseDisease ManagementDisease ProgressionDisease modelEpigenetic ProcessEventEvolutionFoundationsFutureGene Expression ProfilingGene MutationGenesGeneticGoalsHeterogeneityHumanIndividualInterdisciplinary StudyInvestigationLearningLesionLifeMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of urinary bladderMammary Gland ParenchymaMapsMathematicsModelingMolecularMolecular ProfilingMutationOperative Surgical ProceduresOutcomePathologicPathway interactionsPatientsPatternPhenotypePrevalenceProcessProgressive DiseaseRecurrenceResearchResearch DesignResourcesSamplingSeriesSpecimenStructureSubgroupSystemSystemic TherapyTherapeuticTherapeutic InterventionTimeTissue SampleTissuesTreesTumor BiologyTumor TissueValidationVisualizationWorkanticancer researchbreast cancer progressioncancer diagnosiscarcinogenesiscomputational suitecomputerized toolsdesigndisease natural historyexperimental studygenomic datahigh dimensionalityimprovedinnovationinsightmalignant breast neoplasmmolecular markermolecular subtypesmultidimensional datanovelnovel strategiespressureprognostictargeted treatmenttheoriestooltumortumor progression
项目摘要
PROJECT SUMMARY/ABSTRACT
Carcinogenesis may be viewed as a multistep evolutionary process characterized by accumulation of
genetic and epigenetic alterations, driven by selective pressures imposed by the microenvironment. The
delineation of tumor evolution would provide invaluable insights into tumor biology and lay a foundation for
the development of improved diagnostics, prognostics and targeted therapeutics.
Time-series data are ideal for deriving models of dynamic progression, but this is impossible to collect in
human cancer because of the need for timely surgical intervention and systemic therapy, which alter the
natural history of the disease and exert selection pressures that affect tumor evolution. To overcome the
human serial sampling issue, we have devised a computational strategy to understand cancer evolution by
deriving pseudo time-series data from ‘static’ samples (excised tissue specimens). The design is based on
the rationale that each sample can provide a snapshot of the disease process, and if the number of samples
is sufficiently large we can recover a visualization of disease progression. We demonstrated the utility of the
developed pipeline - referred to as CancerMapp - by applying it to the analysis of gene expression data from
over 9,000 breast tissue samples. Breast cancer progression modeling identified 2 major trajectories to
malignancy – an early split to basal tumors, and a continuum through luminal tumors. The computational
approach and the breast cancer model concept have since been validated in independent studies, and our
findings have provided the impetus for a number of investigations at our institute and by colleagues in the
field.
Built logically on our previous work, we now propose a large-scale interdisciplinary research plan to derive a
progression model for bladder cancer (BLCA). BLCA is among the five most common malignancies
worldwide. In the US alone, new cases for 2018 are estimated at 72,500 with estimated deaths at over
15,000, figures that are anticipated to increase in the near future. Classification of BLCA into multiple
molecular subtypes has recently been proposed and has the potential to impact clinical management.
Nonetheless, significant biologic subgroup heterogeneity remains, and more work is needed before a unified
classification system can gain wide acceptance. More importantly, there is, as yet, no understanding of the
inter-relationships between subtypes. Insights into how subtypes are related and how cancer evolution
influences the observed changes in molecular pathologic phenotype is the next level of analysis required
and is the focus of this proposal.
The proposed work will inform a range of research directions that were previously unattainable. The
derivation of a BLCA roadmap and the identification of pivotal molecular events that drive stepwise cancer
progression will provide new insights into tumor biology and guide the development of improved cancer
diagnostics, prognostics and targeted therapeutics. Annotated progression maps can also guide the design
of clinical trials and animal studies to focus on pivotal points of cancer development, which may yield the
best return with limited resources.
项目总结/摘要
致癌作用可以被看作是一个多步骤的进化过程,其特征是
遗传和表观遗传改变,由微环境施加的选择压力驱动。的
肿瘤演变的描述将为肿瘤生物学提供宝贵的见解,
改进诊断学、免疫学和靶向治疗学的发展。
时间序列数据是推导动态进展模型的理想方法,但这是不可能收集的。
人类癌症,因为需要及时的手术干预和全身治疗,这改变了
疾病的自然史,并施加影响肿瘤演变的选择压力。克服
人类连续采样问题,我们设计了一种计算策略来了解癌症的演变,
从“静态”样本(切除的组织样本)导出伪时间序列数据。该设计基于
每个样本可以提供疾病过程的快照的基本原理,以及样本数量是否
足够大,我们可以恢复疾病进展的可视化。我们展示了
开发的管道-被称为CancerMapp -通过将其应用于分析基因表达数据,
超过9,000个乳房组织样本乳腺癌进展建模确定了2个主要轨迹,
恶性肿瘤-早期分裂为基底肿瘤,并通过管腔肿瘤连续。计算
方法和乳腺癌模型的概念已经在独立的研究中得到了验证,我们的
研究结果为我们研究所和研究所的同事进行的一些调查提供了动力。
领域
逻辑上建立在我们以前的工作,我们现在提出一个大规模的跨学科研究计划,以获得一个
膀胱癌进展模型(BLCA)。BLCA是五种最常见的恶性肿瘤之一
国际吧仅在美国,2018年的新病例估计为72,500例,估计死亡人数超过
15,000人,预计在不久的将来还会增加。将BLCA分类为多个
最近提出了分子亚型,并具有影响临床管理的潜力。
尽管如此,显著的生物亚组异质性仍然存在,在统一之前需要更多的工作。
分类系统可以获得广泛的认可。更重要的是,到目前为止,
子类型之间的相互关系。深入了解亚型之间的关系以及癌症如何演变
影响所观察到的分子病理表型的变化是下一个层次的分析所需的
也是本次提案的重点。
拟议的工作将为一系列以前无法实现的研究方向提供信息。的
推导BLCA路线图并识别驱动逐步癌症的关键分子事件
进展将为肿瘤生物学提供新的见解,并指导改善癌症的发展。
诊断学、免疫学和靶向治疗学。带注释的进度图也可以指导设计
临床试验和动物研究的重点是癌症发展的关键点,这可能会产生
以有限的资源获得最好的回报。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve Goodison其他文献
Steve Goodison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steve Goodison', 18)}}的其他基金
Prognostic analysis and progression modeling of basal-like breast cancer using multi-region sequencing
使用多区域测序对基底样乳腺癌进行预后分析和进展建模
- 批准号:
10586445 - 财政年份:2023
- 资助金额:
$ 48.57万 - 项目类别:
Advanced Computational Approaches to Delineating Dynamic Cancer Progression Processes by Using Massive Static Sample Data
使用大量静态样本数据描绘动态癌症进展过程的高级计算方法
- 批准号:
10328873 - 财政年份:2020
- 资助金额:
$ 48.57万 - 项目类别:
Advanced Computational Approaches to Delineating Dynamic Cancer Progression Processes by Using Massive Static Sample Data
使用大量静态样本数据描绘动态癌症进展过程的高级计算方法
- 批准号:
10546466 - 财政年份:2020
- 资助金额:
$ 48.57万 - 项目类别:
Translation of a Clinical Molecular Diagnostic Assay for Bladder Cancer
膀胱癌临床分子诊断检测的转化
- 批准号:
10203860 - 财政年份:2017
- 资助金额:
$ 48.57万 - 项目类别:
Translation of a Clinical Molecular Diagnostic Assay for Bladder Cancer
膀胱癌临床分子诊断检测的转化
- 批准号:
9980305 - 财政年份:2017
- 资助金额:
$ 48.57万 - 项目类别:
Development of molecular assays for non-invasive bladder cancer detection
开发用于非侵入性膀胱癌检测的分子测定方法
- 批准号:
8453158 - 财政年份:2013
- 资助金额:
$ 48.57万 - 项目类别:
Development of molecular assays for non-invasive bladder cancer detection
开发用于非侵入性膀胱癌检测的分子测定方法
- 批准号:
8823877 - 财政年份:2013
- 资助金额:
$ 48.57万 - 项目类别:
Towards a non-invasive molecular test for bladder cancer
膀胱癌的非侵入性分子检测
- 批准号:
8875841 - 财政年份:2007
- 资助金额:
$ 48.57万 - 项目类别:
Towards a non-invasive molecular test for bladder cancer
膀胱癌的非侵入性分子检测
- 批准号:
7305500 - 财政年份:2007
- 资助金额:
$ 48.57万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 48.57万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 48.57万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 48.57万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 48.57万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 48.57万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 48.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 48.57万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 48.57万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 48.57万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 48.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists