Built Environment Assessment through Computer visiON (BEACON): Applying Deep Learning to Street-Level and Satellite Images to Estimate Built Environment Effects on Cardiovascular Health
通过计算机视觉进行建筑环境评估 (BEACON):将深度学习应用于街道和卫星图像,以估计建筑环境对心血管健康的影响
基本信息
- 批准号:10675445
- 负责人:
- 金额:$ 75.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAir PollutionAncillary StudyCardiovascular DiseasesCatalogsCellular PhoneCessation of lifeCitiesComputer Vision SystemsCoronary heart diseaseCross-Sectional StudiesDataEnvironmentEnvironmental HazardsEnvironmental Risk FactorExposure toFollow-Up StudiesGlobal Positioning SystemGreen spaceHealth ProfessionalHealth PromotionHealth TechnologyHealth behaviorHealth behavior changeImageImageryIncidenceInfrastructureInterventionLocationMeasuresMethodsMyocardial InfarctionNoiseNurses&apos Health StudyOutcomeParticipantPathway interactionsPatient Self-ReportPatternPerceptionPhysical activityPhysical environmentPlanet EarthPoliciesPopulationProcessProspective cohortProspective, cohort studyQuestionnairesRecording of previous eventsResolutionSafetyShapesSpecific qualifier valueStrokeTimeTreesWeightWeight GainWomanWorkbuilt environmentcardiovascular healthcohortdeep learningdeep learning algorithmdesignexperienceextreme temperaturefollow-upinnovationinsightland uselearning strategymHealthmachine learning algorithmmennovelpetabyteresidencespatiotemporalurban areaurban planningwearable device
项目摘要
PROJECT SUMMARY
Over 80% of the US population resides in urban areas, and the built environment—the buildings, streets, and
green spaces in which we live—may drive cardiovascular disease (CVD) by promoting or limiting physical activity
and weight gain, and by influencing exposures to environmental factors, such as air pollution, extreme
temperatures, and noise. Evidence for the built environment and CVD has been dominated by cross-sectional
studies with nonspecific exposure assessment. Developing precise, time-varying, and personalized exposure
metrics is necessary to establish causal relationships between the built environment and CVD, which are crucial
to informing policy-relevant, actionable interventions. It is now possible to estimate such exposure metrics at
scale in prospective cohort studies using deep learning computer vision methods, a class of machine learning
algorithms that can accurately process images, combined with time-varying nationwide street-level imagery, high
resolution satellite data, and novel mobile health technologies. We propose to identify the influence of the built
environment on CVD health behaviors and CVD incidence by developing built environment exposure measures
from deep learning algorithms, and to apply these exposure measures to time-activity data in participants with
global positioning systems (GPS) data from the Nurses’ Health Study 3 (N=500), and to geocoded residential
addresses from nationwide Nurses’ Health Study, Nurses’ Health Study II, and Health Professionals Follow-up
Study prospective cohorts (N=288,000). We will create built environment exposure measures by leveraging deep
learning algorithms applied to nationwide Google Street View imagery (2007-2020) and high-resolution Landsat
satellite data (1986-2020) to create fine-scale, time-varying built environment metrics of the natural environment
(e.g., trees), physical environment (e.g., sidewalks), perceptions (e.g., safety), and urban form (e.g., compact
high-rise). We will use a mix of innovative analytical approaches to determine the effect of the built environment
on CVD-related health behaviors and CVD incidence across different time horizons. First, we will append these
metrics to time-activity patterns of participants who have collected minute-level data on GPS and physical activity
from smartphones and consumer wearable devices to quantify how minute-level exposure to the built
environment is related to CVD health behaviors. Next, we will apply novel built environment metrics to residential
address histories of participants to estimate how self-reported CVD health behaviors change after their
residential built environment changes. Last, we will examine the association between long-term cumulative
residential exposure to the built environment and CVD incidence over 34 years of follow-up. Our work will enable
us to measure built environment exposure from unprecedented perspectives in large prospective cohorts, to
elucidate potential causal relationships between the built environment and CVD health behaviors, and to better
specify pathways to CVD incidence. Ultimately, our work will yield actionable insights to guide land use policy
and urban planning strategies to design cities that optimize cardiovascular health.
项目总结
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The PAD-US-AR dataset: Measuring accessible and recreational parks in the contiguous United States.
- DOI:10.1038/s41597-022-01857-7
- 发表时间:2022-12-16
- 期刊:
- 影响因子:9.8
- 作者:Browning, Matthew H. E. M.;Rigolon, Alessandro;Ogletree, Scott;Wang, Ruoyu;Klompmaker, Jochem O. O.;Bailey, Christopher;Gagnon, Ryan;James, Peter
- 通讯作者:James, Peter
Associations of air pollution with COVID-19 positivity, hospitalisations, and mortality: Observational evidence from UK Biobank.
- DOI:10.1016/j.envpol.2022.119686
- 发表时间:2022-09-01
- 期刊:
- 影响因子:8.9
- 作者:Sheridan, Charlotte;Klompmaker, Jochem;Cummins, Steven;James, Peter;Fecht, Daniela;Roscoe, Charlotte
- 通讯作者:Roscoe, Charlotte
Nature's contributions in coping with a pandemic in the 21st century: A narrative review of evidence during COVID-19.
- DOI:10.1016/j.scitotenv.2022.155095
- 发表时间:2022-08-10
- 期刊:
- 影响因子:0
- 作者:Labib SM;Browning MHEM;Rigolon A;Helbich M;James P
- 通讯作者:James P
Associations of fine particulate matter with incident cardiovascular disease; comparing models using ZIP code-level and individual-level fine particulate matter and confounders.
细颗粒物与心血管疾病的关联;
- DOI:10.1016/j.scitotenv.2024.171866
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Klompmaker,JochemO;Hart,JaimeE;Dominici,Francesca;James,Peter;Roscoe,Charlie;Schwartz,Joel;Yanosky,JeffD;Zanobetti,Antonella;Laden,Francine
- 通讯作者:Laden,Francine
Light at night and the risk of breast cancer: Findings from the Sister study.
- DOI:10.1016/j.envint.2022.107495
- 发表时间:2022-11
- 期刊:
- 影响因子:11.8
- 作者:Sweeney, Marina R.;Nichols, Hazel B.;Jones, Rena R.;Olshan, Andrew F.;Keil, Alexander P.;Engel, Lawrence S.;James, Peter;Jackson, Chandra L.;Sandler, Dale P.;White, Alexandra J.
- 通讯作者:White, Alexandra J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter James其他文献
Peter James的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter James', 18)}}的其他基金
Built Environment Assessment through Computer visiON (BEACON): Applying Deep Learning to Street-Level and Satellite Images to Estimate Built Environment Effects on Cardiovascular Health
通过计算机视觉进行建筑环境评估 (BEACON):将深度学习应用于街道和卫星图像,以估计建筑环境对心血管健康的影响
- 批准号:
10192819 - 财政年份:2020
- 资助金额:
$ 75.74万 - 项目类别:
Built Environment Assessment through Computer visiON (BEACON): Applying Deep Learning to Street-Level and Satellite Images to Estimate Built Environment Effects on Cardiovascular Health
通过计算机视觉进行建筑环境评估 (BEACON):将深度学习应用于街道和卫星图像,以估计建筑环境对心血管健康的影响
- 批准号:
10444927 - 财政年份:2020
- 资助金额:
$ 75.74万 - 项目类别:
High Resolution Measures of Behavioral Cancer Risk Factors From Mobile Technology
通过移动技术对行为癌症风险因素进行高分辨率测量
- 批准号:
9442185 - 财政年份:2017
- 资助金额:
$ 75.74万 - 项目类别:
High resolution measures of behavioral cancer risk factors from mobile technology
通过移动技术对行为癌症危险因素进行高分辨率测量
- 批准号:
9013227 - 财政年份:2016
- 资助金额:
$ 75.74万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 75.74万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 75.74万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 75.74万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 75.74万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 75.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 75.74万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 75.74万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 75.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 75.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 75.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)