Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
基本信息
- 批准号:10674131
- 负责人:
- 金额:$ 88.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:Acinetobacter baumanniiAddressAdvanced DevelopmentAmino AcidsAminoglycosidesAnimal ModelAnimalsAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsAntimicrobial ResistanceBacteremiaBacteriaBiologyBlood CirculationCeftazidimeCellsCessation of lifeChemicalsClinicalClinical TrialsColistinCombating Antibiotic Resistant BacteriaDataDeveloping CountriesDevelopmentDrug KineticsEngineeringEpithelial CellsErythrocytesEscherichia coliEvaluationExhibitsFibroblastsFluoroquinolonesFutureGenerationsGoalsGram-Negative Bacterial InfectionsGrantHospitalsHost DefenseHumanIncidenceInfectionIntellectual PropertyInternationalKlebsiella pneumoniaeLeadLegal patentLeukocytesLifeLungLung infectionsMammalian CellMedicalMembraneModificationMolecular ConformationMulti-Drug ResistanceMultiple Bacterial Drug ResistanceMusNamesNational Institute of Allergy and Infectious DiseaseNon-Rodent ModelOrganismPathogenicityPeptide AntibioticsPeptidesPharmacodynamicsPharmacologyPolymyxin BPolymyxin ResistancePolymyxinsPositioning AttributePreclinical TestingPropertyProteinsPublic HealthRationalizationRattusReportingResearchResearch ProposalsResistanceResistance developmentRespiratory Tract InfectionsRodent ModelSafetySeriesStructure-Activity RelationshipSuperbugSystemTherapeuticTherapeutic AgentsTimeToxic effectTrademarkTreatment CostUnited StatesWorkacute toxicityantimicrobialantimicrobial drugantimicrobial peptidebacterial resistancebeta-Lactamasebeta-Lactamscarbapenem resistanceclinical applicationclinical developmentcommercializationcytotoxicitydesigndosagedrug candidatedrug discoveryeffective therapyemerging pathogenfightingimprovedinhibitorintravenous administrationlead candidatelead optimizationmicroorganismmouse modelnephrotoxicitynext generationnovelnovel antibiotic classnovel therapeuticspathogenpeptide drugpharmacokinetics and pharmacodynamicspharmacologicpre-clinicalpre-clinical researchpreclinical developmentprogramspublic health relevancerational designresistant Klebsiella pneumoniaeresistant strainstandard of careunnatural amino acidsvirtual
项目摘要
The alarming emergence of multidrug-resistant (MDR) pathogenic microorganisms worldwide and the lack of
next-generation portfolios of novel antimicrobials threaten human and public health. Therefore, it is a worldwide
priority to expedite the development of novel antimicrobial therapies to control MDR bacteria effectively. Natural
and synthetic antimicrobial peptides (AMPs) exhibit great potential as therapeutic agents because of their unique
modes of action in fast-killing bacteria through membrane permeation. However, several barriers to AMP
development limit its clinical application. This application aims to overcome current AMP limitations to develop a
safe and effective broad-spectrum antimicrobial against MDR Gram-negative bacterial infection. Our novel
peptide therapeutics A4-AMP antibiotics (A4X) is a new generation of computationally engineered AMPs
(eAMPs) derived from the antimicrobial motif, alpha-4, of a natural human host defense protein SPLUNC1 with
negligible toxicity to mammalian cells. The extensive results from our studies demonstrate that our current lead
candidate displays superior antibacterial activity to standard of care (SoC) antibiotics in over 500 clinical isolates
of difficult-to-kill MDR Gram-negative pathogens obtained from hospitals and the CDC & FDA Antibiotic
Resistance Isolate Bank. Our A4X lead also has a much lower tendency to develop resistance than SoC
antibiotics. The A4X lead is safe and well tolerated when intravenously administered to mice and rats, with a four
times higher maximum tolerated dosage than colistin, a last resort antibiotic, in mouse blood circulation.
Moreover, we have demonstrated the efficacy of the A4X lead against Klebsiella pneumoniae and
Acinetobacter baumannii in mouse models of bacteremia and respiratory infection. In this project, we will carry
out preclinical and pre-IND non-clinical development activities and perform structure-activity relationship (SAR)
based optimization of the current A4X lead to advance the preclinical development and to determine the clinical
utility. We will extensively examine the safety, pharmacokinetic/pharmacodynamic, and efficacy of these novel
antimicrobial agents in small and large animals of the most effective A4X. The targeting bacteria are the MDR
strains of Gram-negative species on the CDC's urgent pathogen threats list and WHO's the most critical global
priority 1 pathogens list (carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumonia, and Escherichia
coli) and, including resistant strains to colistin. This proposal targets the urgent unmet global medical need for
novel antibiotics and addresses the U.S. National Action Plan for Combating Antibiotic-Resistant Bacteria in a
timely manner. Successful completion of these studies will have an enormous impact on developing a novel
class of antibiotics capable of fighting MDR "superbugs."
全球范围内多重耐药(MDR)病原微生物的惊人出现以及缺乏
下一代新型抗菌药物组合威胁人类和公共健康。因此,它是一个世界性的
当务之急是加快开发新型抗菌疗法,以有效控制耐多药细菌。自然的
和合成抗菌肽(AMP)因其独特的特性而展现出作为治疗剂的巨大潜力
通过膜渗透快速杀死细菌的作用方式。然而,AMP 存在一些障碍
的发展限制了其临床应用。该应用程序旨在克服当前的 AMP 限制来开发
安全有效的广谱抗菌药物,针对耐多药革兰氏阴性细菌感染。我们的小说
肽疗法 A4-AMP 抗生素 (A4X) 是新一代计算工程 AMP
(eAMP) 源自天然人类宿主防御蛋白 SPLUNC1 的抗菌基序 alpha-4,
对哺乳动物细胞的毒性可以忽略不计。我们研究的广泛结果表明我们目前的领先地位
候选药物在 500 多种临床分离株中显示出优于标准护理 (SoC) 抗生素的抗菌活性
从医院以及 CDC 和 FDA 抗生素获得的难以杀死的 MDR 革兰氏阴性病原体
电阻隔离银行。我们的 A4X 引线产生阻力的趋势也比 SoC 低得多
抗生素。当静脉注射给小鼠和大鼠时,A4X 铅是安全的且耐受性良好,具有四个
小鼠血液循环中的最大耐受剂量比最后的抗生素粘菌素高出一倍。
此外,我们还证明了 A4X 引线对肺炎克雷伯菌和
菌血症和呼吸道感染小鼠模型中的鲍曼不动杆菌。在这个项目中,我们将携带
进行临床前和 IND 前非临床开发活动并执行结构-活性关系 (SAR)
基于当前 A4X 引线的优化,以推进临床前开发并确定临床
公用事业。我们将广泛检查这些新型药物的安全性、药代动力学/药效学和功效
抗菌药物对小型和大型动物最有效的是A4X。目标细菌是MDR
疾病预防控制中心的紧急病原体威胁清单和世卫组织的全球最严重的病原体威胁清单上的革兰氏阴性菌菌株
优先1级病原体列表(耐碳青霉烯类鲍曼不动杆菌、肺炎克雷伯菌和大肠杆菌)
大肠杆菌),包括对粘菌素具有抗性的菌株。该提案针对的是全球未满足的迫切医疗需求
新型抗生素并解决了美国抗击抗生素耐药性细菌国家行动计划
及时的方式。成功完成这些研究将对小说的开发产生巨大影响
一类能够对抗多重耐药“超级细菌”的抗生素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanpu Peter Di其他文献
Yuanpu Peter Di的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuanpu Peter Di', 18)}}的其他基金
Cellular and molecular mechanisms of e-cigarette vaping-induced acute lung injury
电子烟引起急性肺损伤的细胞和分子机制
- 批准号:
10690279 - 财政年份:2022
- 资助金额:
$ 88.07万 - 项目类别:
Novel antimicrobial agents to overcome antibiotic resistant Pseudomonas and MRSA respiratory infection
新型抗菌药物可克服抗生素耐药性假单胞菌和 MRSA 呼吸道感染
- 批准号:
10204921 - 财政年份:2017
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
7842160 - 财政年份:2009
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
8307626 - 财政年份:2008
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
7902103 - 财政年份:2008
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
8316177 - 财政年份:2008
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
8289968 - 财政年份:2008
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
8119055 - 财政年份:2008
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
7684085 - 财政年份:2008
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
8113671 - 财政年份:2008
- 资助金额:
$ 88.07万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 88.07万 - 项目类别:
Research Grant














{{item.name}}会员




