Inhibitory feedback in the avian auditory brainstem
鸟类听觉脑干的抑制反馈
基本信息
- 批准号:10677324
- 负责人:
- 金额:$ 3.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Acoustic NerveAction PotentialsAddressAdultAfferent NeuronsAgeAnatomyAuditoryAuditory systemBinauralBirdsBrainBrain StemCell NucleusCellsCochlear ImplantsCochlear nucleusCodeCollaborationsCommunicationConfocal MicroscopyContralateralCuesDataDendritesDistalElectrophysiology (science)ElectroporationFeedbackFoundationsFrequenciesFunctional disorderGoalsHearingHeterogeneityHyperactivityHyperacusisImmunohistochemistryIn VitroIndividualInhibitory SynapseIontophoresisIpsilateralMembraneMental DepressionMicroscopyNervous SystemNeural InhibitionNeuronsPathway interactionsPatternPharmacologyPhasePhenotypePhysiologicalPopulationPresbycusisPropertyQuality of lifeResearchRoleSensoryShapesSpeech SoundStimulusStructureSymptomsSynapsesSynaptic TransmissionTechniquesTinnitusTrainingauditory processingcareercell typeexperimental studygamma-Aminobutyric Acidhearing impairmenthuman old age (65+)inhibitory neuroninsightnerve supplyneural circuitpostsynapticreconstructionresponsesegregationsoundspeech processingstemsuccesssuperior olivary nucleustranslational therapeuticsvirtualvoltage
项目摘要
PROJECT SUMMARY
Auditory sensory processing requires neuronal communication via action potentials with precision in the order of
microseconds. The nervous system achieves this precision by specializing intrinsic membrane properties and synaptic
transmission, particularly neural inhibition. Neural inhibition sharpens sensory processing by increasing the selectivity of
neurons to particularly salient stimuli and issues with neural inhibition are thought to underlie sensory problems such as
tinnitus, hyperacusis, and age-related hearing loss (ARHL). In the avian auditory brainstem, inhibition stems virtually
entirely from the superior olivary nucleus (SON). Neurons in SON receive excitatory input from two distinct, parallel
circuits: the ipsilateral cochlear nucleus angularis (NA), which encodes intensity information from the auditory nerve,
and from the ipsilateral coincidence-detecting nucleus laminaris (NL), which encodes binaural timing information from
the cochlear nucleus magnocellularis (NM). Studies in vitro have demonstrated that there were 2 electrophysiological
phenotypes, a single-spiking and a tonic firing response, in SON, however, preliminary data has revealed a third
phenotype, a patterned tonic phenotypes. Increasing sound intensity increased phase-locking capabilities in a subset of
nucleus laminaris neurons, indicating that there is potentially convergence from NA and NL in SON, however it has not
been demonstrated. Importantly, Burger et al. (2005) demonstrated that SON neurons either project ipsilaterally to NA,
NL, and the cochlear nucleus magnocellularis, or to the contralateral SON. However, it is unclear if these phenotypes
underlie the divergent projections. Research has shown that inhibition increases the precision of timing neurons in NM
and NL, but the effect on intensity coding in NA, which contains many different cell types, is less clear. Inhibitory
terminals are heterogeneously expressed in NA, which some seemingly clustered on cell bodies and others on distal
dendrites. The electrophysiological diversity in NA has been shown to exist along a spectrum of operating modes. It is
unclear if the inhibitory terminals are related to the functional heterogeneity in NA, particularly in rate-coding neurons
that are encode the dynamic range of spectral information for intensity coding. The goal of this project is to determine
how neurons in SON fit into well characterized brainstem circuits and how they influence intensity coding neurons in the
following two Specific Aims. Aim 1 – to use in vitro electrophysiology, synaptic stimulation, and neuronal reconstruction
to determine how inputs are integrated in SON and the cell-type specific targets of divergent projections from SON
neurons. Aim 2- use in vitro electrophysiology, immunohistochemistry, expansion microscopy, and confocal microscopy
to determine how inhibitory terminals are expressed along specific NA neurons and how inhibition shapes intensity
coding in NA. My results will provide insight into how circuits can utilize specialized inhibitory neurons for sensory
processing, and how inhibition can shape spectrotemporal processing through its effect on intensity coding.
项目摘要
听觉感觉处理需要通过动作电位进行神经元通信,精确度为
微秒。神经系统通过专门化内在膜特性和突触特性来实现这种精确性。
传输,尤其是神经抑制。神经抑制通过增加选择性来锐化感觉处理,
神经元对特别突出的刺激和神经抑制的问题被认为是感觉问题的基础,
耳鸣、听觉过敏和年龄相关性听力损失(ARHL)。在鸟类的听觉脑干中,
完全来自上级橄榄核(SON)。SON中的神经元接受来自两个不同的、平行的
回路:同侧耳蜗角核(NA),编码来自听觉神经的强度信息,
以及来自同侧的一致性检测核(NL),其编码来自以下的双耳定时信息:
耳蜗大细胞核(NM)。体外研究表明,有2个电生理
表型,一个单一的尖峰和紧张性放电反应,在SON,然而,初步数据显示,第三个
表型,一种模式化的补药表型。增加声音强度增加了一个子集的锁相能力,
结果表明,在SON中,NA和NL之间存在潜在的会聚,但在SON中,
被证明。重要的是,Burger等人(2005)证明SON神经元要么投射到同侧NA,
NL和耳蜗大细胞核,或对侧SON。然而,目前尚不清楚这些表型是否
构成了发散的投影。研究表明,抑制增加了NM中计时神经元的精确性
和NL,但对NA中的强度编码的影响,其中包含许多不同的细胞类型,是不太清楚。抑制
在NA中不均匀地表达末端,其中一些似乎聚集在细胞体上,而另一些聚集在远端细胞体上。
树突NA的电生理多样性已被证明存在沿着一系列的操作模式。是
不清楚抑制性终末是否与NA的功能异质性有关,特别是在速率编码神经元中
其编码用于强度编码的光谱信息的动态范围。这个项目的目标是确定
SON中的神经元如何适应表征良好的脑干回路,以及它们如何影响SON中的强度编码神经元。
有两个具体目标。目的1 -使用体外电生理学,突触刺激和神经元重建
以确定输入如何整合在SON中以及来自SON的发散投射的细胞类型特异性靶点
神经元目的2-使用体外电生理学、免疫组织化学、扩增显微镜和共聚焦显微镜
确定抑制性末梢如何沿沿着特定NA神经元表达以及抑制如何形成强度
编码为NA。我的研究结果将提供深入了解如何电路可以利用专门的抑制神经元的感觉
处理,以及抑制如何通过其对强度编码的影响来塑造频谱时间处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Baldassano其他文献
James Baldassano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 3.46万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 3.46万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 3.46万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 3.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 3.46万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 3.46万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 3.46万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 3.46万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 3.46万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 3.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)