Mechanisms of septin-actin cytoskeletal crosstalk

septin-肌动蛋白细胞骨架串扰的机制

基本信息

  • 批准号:
    10677181
  • 负责人:
  • 金额:
    $ 7.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY This proposal addresses how the cellular functions of two major cytoskeletal polymer systems, septins and actin, are coordinated and influence each other. To address this question, I will use the budding yeast S. cerevisiae, where septins were first discovered, and where I am readily able to combine a ‘bottom up’ in vitro reconstitution and single molecule imaging approach with a ‘top down’ genetics and live imaging approach. The proposal builds off of recent discoveries made in the Goode lab, which reveal that septins are organized at the yeast bud neck into 8-10 evenly-spaced bars, or “pillars”, which co-align with F-actin cables used for intracellular transport. While work in a number of model organisms has closely linked the in vivo functions of septins and actin, we still have only a limited understanding of the molecular mechanisms underlying this septin-actin crosstalk. The goal of this proposal is to define these mechanisms. S. cerevisiae express 5 different septin proteins, which co-polymerize into filaments and are further organized into higher order structures. My preliminary data show that one of the septins (Shs1) mediates direct binding to F-actin in vitro, and that loss of SHS1 disrupts actin cable architecture and function in vivo. In Aim1, I will use targeted mutagenesis to generate new shs1 separation-of-function mutants disrupting F-actin binding. I will then use these mutants to investigate how Shs1-mediated F-actin binding contributes to the alignment of actin cables with septin pillars in vivo, and intracellular transport of secretory vesicles. In Aim2, I will reconstitute purified septin oligomers and filaments decorated with actin- nucleating formins (Bnr1) and formin-regulatory proteins (e.g., Gin4, Bud6, and the Mlc1-Iqg1-Hof1 complex), and define their effects on F-actin assembly and organization by TIRF microscopy and single molecule imaging. These experiments will test several important hypotheses, including: (1) whether septins and Gin4 activate full- length Bnr1 from autoinhibition to promote actin assembly; (2) whether Iqg1 has regulatory effects on F-actin and Bnr1, like its human counterpart IQGAP1 (based on a recent study from the Goode lab; Hoeprich et al., 2022); and (3) whether septin oligomers/filaments themselves (via Shs1) directly influence F-actin bundling and dynamics. In parallel to these in vitro experiments, I will acutely deplete the same proteins in vivo (using degron tags) to determine how each contributes to the assembly and alignment of actin cables at the bud neck. My preliminary data already point to an exciting new role for Iqg1 in controlling actin cable formation during polarized cell growth. Together, the in vitro and in vivo work outlined in this proposal will: (i) clarify how septins, formins, and formin-regulatory proteins work in concert to shape actin networks, (ii) define new subunit-specific roles for septins in actin regulation, (iii) lay a strong foundation for launching my own lab focused on septin-actin crosstalk, and (iv) provide new leads that will allow me to extend this work in the future (on my own and via collaboration) into other systems.
项目总结 这项提案涉及两个主要的细胞骨架聚合物系统--Septins和Actin--的细胞功能。 是相互协调、相互影响的。为了解决这个问题,我将使用萌芽酵母酿酒酵母, 在那里,第一次发现了分隔素,在那里,我很容易地结合了一种‘自下而上’的体外重建 和单分子成像方法与‘自上而下’的遗传学和活体成像方法。提案建立了 根据古德实验室的最新发现,这些发现表明,隔质是在酵母芽颈组织起来的 形成8-10个均匀间隔的条状或“柱状”,它们与用于细胞内运输的F-肌动蛋白缆线共同对准。而当 在一些模式生物中的工作已经将体内的隔膜蛋白和肌动蛋白的功能紧密联系在一起,我们仍然有 对这种Septin-肌动蛋白串扰的分子机制了解有限。这样做的目的是 提案就是定义这些机制。酿酒酵母表达5种不同的Septin蛋白,它们共同聚合 形成细丝,并进一步组织成更高顺序的结构。我的初步数据显示,其中一个 Septins(Shs1)在体外介导与F-肌动蛋白的直接结合,而SHS1的缺失破坏了肌动蛋白的电缆结构 并在体内发挥作用。在Aim1中,我将使用定向突变来生成新的shs1功能分离 破坏F-肌动蛋白结合的突变体。然后我将使用这些突变体来研究Shs1介导的F-肌动蛋白是如何 结合有助于肌动蛋白电缆与体内的间隔素柱对齐,以及细胞内转运 分泌性小泡。在AIM2中,我将重建纯化的Septin寡聚体和用肌动蛋白装饰的细丝- 核化形成蛋白(Bnr1)和形成蛋白调节蛋白(例如Gin4、Bud6和MLc1-Iqg1-Hof1复合体), 并通过TIRF显微镜和单分子成像确定它们对F-肌动蛋白组装和组织的影响。 这些实验将检验几个重要的假设,包括:(1)Septins和Gin4是否完全激活- (2)Iqg1是否对F-肌动蛋白有调节作用 和Bnr1,与其人类对应的IQGAP1一样(基于Goode实验室最近的一项研究;Hoeprich等人, 2022);以及(3)Septin低聚体/细丝本身(通过Shs1)是否直接影响F-肌动蛋白捆绑和 动力学。在这些体外实验的同时,我将在体内剧烈地耗尽相同的蛋白质(使用degron 标签),以确定每个标签对芽颈的肌动蛋白电缆的组装和对齐有何作用。我的 初步数据已经表明,Iqg1在控制极化过程中肌动蛋白电缆的形成方面发挥了令人兴奋的新作用 细胞生长。综上所述,这项提案中概述的体外和体内工作将:(I)阐明Septins,Form in, 和形成蛋白调节蛋白协同作用形成肌动蛋白网络,(Ii)定义新的亚基特定的作用 肌动蛋白调控中的Septin,(Iii)为我自己推出专注于Septin-Actin串扰的实验室奠定了坚实的基础, 以及(Iv)提供新的线索,使我能够在未来扩展这项工作(我自己和通过合作) 进入其他系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph O Magliozzi其他文献

Joseph O Magliozzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了