Mechanisms of septin-actin cytoskeletal crosstalk

septin-肌动蛋白细胞骨架串扰的机制

基本信息

  • 批准号:
    10677181
  • 负责人:
  • 金额:
    $ 7.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY This proposal addresses how the cellular functions of two major cytoskeletal polymer systems, septins and actin, are coordinated and influence each other. To address this question, I will use the budding yeast S. cerevisiae, where septins were first discovered, and where I am readily able to combine a ‘bottom up’ in vitro reconstitution and single molecule imaging approach with a ‘top down’ genetics and live imaging approach. The proposal builds off of recent discoveries made in the Goode lab, which reveal that septins are organized at the yeast bud neck into 8-10 evenly-spaced bars, or “pillars”, which co-align with F-actin cables used for intracellular transport. While work in a number of model organisms has closely linked the in vivo functions of septins and actin, we still have only a limited understanding of the molecular mechanisms underlying this septin-actin crosstalk. The goal of this proposal is to define these mechanisms. S. cerevisiae express 5 different septin proteins, which co-polymerize into filaments and are further organized into higher order structures. My preliminary data show that one of the septins (Shs1) mediates direct binding to F-actin in vitro, and that loss of SHS1 disrupts actin cable architecture and function in vivo. In Aim1, I will use targeted mutagenesis to generate new shs1 separation-of-function mutants disrupting F-actin binding. I will then use these mutants to investigate how Shs1-mediated F-actin binding contributes to the alignment of actin cables with septin pillars in vivo, and intracellular transport of secretory vesicles. In Aim2, I will reconstitute purified septin oligomers and filaments decorated with actin- nucleating formins (Bnr1) and formin-regulatory proteins (e.g., Gin4, Bud6, and the Mlc1-Iqg1-Hof1 complex), and define their effects on F-actin assembly and organization by TIRF microscopy and single molecule imaging. These experiments will test several important hypotheses, including: (1) whether septins and Gin4 activate full- length Bnr1 from autoinhibition to promote actin assembly; (2) whether Iqg1 has regulatory effects on F-actin and Bnr1, like its human counterpart IQGAP1 (based on a recent study from the Goode lab; Hoeprich et al., 2022); and (3) whether septin oligomers/filaments themselves (via Shs1) directly influence F-actin bundling and dynamics. In parallel to these in vitro experiments, I will acutely deplete the same proteins in vivo (using degron tags) to determine how each contributes to the assembly and alignment of actin cables at the bud neck. My preliminary data already point to an exciting new role for Iqg1 in controlling actin cable formation during polarized cell growth. Together, the in vitro and in vivo work outlined in this proposal will: (i) clarify how septins, formins, and formin-regulatory proteins work in concert to shape actin networks, (ii) define new subunit-specific roles for septins in actin regulation, (iii) lay a strong foundation for launching my own lab focused on septin-actin crosstalk, and (iv) provide new leads that will allow me to extend this work in the future (on my own and via collaboration) into other systems.
项目摘要 这一建议解决了两个主要的细胞骨架聚合物系统,septins和肌动蛋白, 相互协调,相互影响。为了解决这个问题,我将使用芽殖酵母S。酿酒酵母, 在那里,septins首次被发现,在那里,我很容易就能将联合收割机“自下而上”的体外重建 和单分子成像方法与“自上而下”的遗传学和活体成像方法。该提案建立 古德实验室最近的发现表明,septins是在酵母芽颈处组织起来的, 形成8-10个均匀间隔的条或“柱”,与用于细胞内运输的F-肌动蛋白电缆共同排列。而 在许多模式生物中的工作已经将septins和actin的体内功能紧密联系起来,我们仍然有 只有一个有限的了解的分子机制,这种septin-actin串扰。这个目标 建议是界定这些机制。S.酿酒酵母表达5种不同的Septin蛋白, 并进一步组织成更高级的结构。我的初步数据显示 septins(Shs 1)在体外介导与F-肌动蛋白的直接结合,而SHS 1的缺失破坏了肌动蛋白的结构 并在体内发挥作用。在Aim 1中,我将使用靶向突变来产生新的shs 1功能分离 破坏F-肌动蛋白结合的突变体。然后,我将使用这些突变体来研究Shs 1介导的F-肌动蛋白 结合有助于体内肌动蛋白索与隔蛋白柱的对齐,以及细胞内转运 分泌囊泡在目标2中,我将重组纯化的septin寡聚体和用肌动蛋白修饰的细丝- 成核形成蛋白(Bnr 1)和形成蛋白调节蛋白(例如,Gin 4、Bud 6和Mlc 1-Iqg 1-Hof 1复合物), 并通过TIRF显微镜和单分子成像来确定它们对F-肌动蛋白组装和组织的影响。 这些实验将测试几个重要的假设,包括:(1)septins和Gin 4是否激活全- 长度Bnr 1从自抑制到促进肌动蛋白装配;(2)Iqg 1是否对F-肌动蛋白具有调节作用 和Bnr 1,像它的人类对应物IQGAP 1一样(基于Goode实验室最近的一项研究; Hoeprich等人, 2022);和(3)septin寡聚体/细丝本身(通过Shs 1)是否直接影响F-肌动蛋白成束, 动力学在这些体外实验的同时,我将在体内急性消耗相同的蛋白质(使用降解决定子 标签),以确定每个如何有助于组装和对齐肌动蛋白电缆在芽颈。我 初步的数据已经指出了Iqg 1在极化过程中控制肌动蛋白电缆形成的令人兴奋的新作用, 细胞生长总之,本提案中概述的体外和体内工作将:(i)阐明septins,formins, 和formin调节蛋白协同工作,形成肌动蛋白网络,(ii)定义新的亚基特异性作用, 肌动蛋白调节中的septins,(iii)为启动我自己的专注于septin-actin串扰的实验室奠定了坚实的基础, 和(iv)提供新的线索,使我能够在未来(通过我自己和合作)扩展这项工作 到其他系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph O Magliozzi其他文献

Joseph O Magliozzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 7.11万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了