Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics

乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系

基本信息

  • 批准号:
    10677295
  • 负责人:
  • 金额:
    $ 3.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT ABSTRACT Epigenetic regulation is critical for cardiac electromechanics and pathology. Epigenetic modulators, such as histone deacetylases (HDACs), are known master regulators of gene expression and influence cardiac function through chromatin remodeling, direct action on transcription factors (TFs), and action on cytoskeletal and contractile proteins, among others. Recently, novel pharmacological agents, HDAC inhibitors, have been developed as treatments for cancer and immune diseases, driving an interest in robust characterization of HDAC control in cardiac function. Our preliminary experiments focused on computational modeling of RNAi-informed transcriptomic data in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) but saw limitations in knockdown efficiency and loss-of-function-only modulation using siRNAs. To extend and improve this work, we propose an experimental approach based on bidirectional perturbation (repression/activation) of individual HDAC genes in hiPSC-CM by CRISPR interference and activation (CRISPRi/a). Transcriptomic analysis of these samples will inform computational gene regulatory network (GRN) inference to model relationships between HDACs, TFs, and cardiac ion channels. GRN-predicted relationships will be validated by all-optical electromechanical assays measuring voltage, calcium, and contraction traces in hiPSC-CM. An iterative approach will allow feedback from functional experiments to refine our computational models. Such studies will advance our understanding of how certain HDACs drive electrophysiological phenotypes in the heart, which is critical in the fields of cardiac injury, cardiac therapeutics, and cardio-oncology.
项目摘要 表观遗传调控对心脏电力学和病理学至关重要。表观遗传调节剂,如 组蛋白脱乙酰酶(HDAC)是已知基因表达的主要调节因子,影响心脏功能 通过染色质重塑,直接作用于转录因子(TF),作用于细胞骨架和 收缩蛋白等。最近,新的药理学试剂,HDAC抑制剂,已经被研究。 作为癌症和免疫性疾病的治疗方法开发,推动了对HDAC的强大表征的兴趣 控制心脏功能。我们的初步实验集中在RNAi信息的计算建模上。 在人诱导多能干细胞衍生的心肌细胞(hiPSC-CM)中的转录组学数据, 在敲低效率和使用siRNA的仅功能丧失调节方面的局限性。扩大和改善 这项工作,我们提出了一种实验方法的基础上双向扰动(抑制/激活)的 通过CRISPR干扰和激活(CRISPRi/a)在hiPSC-CM中的单个HDAC基因。转录组 对这些样本的分析将为计算基因调控网络(GRN)推断提供信息,以建立模型 HDAC、TF和心脏离子通道之间的关系。GRN预测的关系将通过 测量hiPSC-CM中的电压、钙和收缩痕迹的全光机电测定。一个 迭代方法将允许来自功能实验的反馈来改进我们的计算模型。等 研究将促进我们对某些HDAC如何驱动心脏中的电生理表型的理解, 这在心脏损伤、心脏治疗学和心脏肿瘤学领域中是关键的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARIA POZO其他文献

MARIA POZO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 3.79万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 3.79万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 3.79万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 3.79万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 3.79万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 3.79万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 3.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了