Imputing quantitative mass spectrometry proteomics data using non-negative matrix factorization

使用非负矩阵分解估算定量质谱蛋白质组数据

基本信息

  • 批准号:
    10677226
  • 负责人:
  • 金额:
    $ 3.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-16 至 2026-04-15
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Alzheimer's disease (AD) represents an emerging global health threat and is a expected to double in prevalence by 2050. AD is a disease of malformed proteins, and significant progress has been made characterizing the AD proteome with mass spectrometery. However, data missingness represents a significant barrier to the interpretation of existing AD mass spectrometry experiments. Missingness refers to peptides or proteins that are present in the biological sample but are not detected by the mass spectrometer due to various technical factors. This project will address missingness by developing machine learning methods for imputing, or estimating, missing values in quantitative mass spectrometry data. The project will develop two separate imputation methods, one using non-negative matrix factorization and the other deep neural networks. These imputation methods will increase the reproducibility and statistical power of mass spectrometry experiments and will enable new discoveries in existing proteomics experiments. These imputation methods will be applicable to virtually any kind of mass spectrometry experiment – tandem mass tag, data dependent acquisition, data independent acquisition, spectral counts, label-free quantification, etc. These imputation methods will be released as lightweight, open-source and easy-to-use software packages and may be incorporated into existing data processing workflows. I will demonstrate the utility of these imputation methods by reanalysing data from several existing AD proteomic studies. My imputation methods will identify novel differentially expressed proteins, co-expression modules and AD biomarkers in these existing datasets. I will also analyze unpublished data-independent acquisition (DIA) proteomics data derived from AD patient cerebrospinal fluid samples. Here I will focus on identifying biomarkers that differentiate between patients based on genetic background and co-morbidity status. I will also identify biomarkers of patients with asymptomatic AD. The imputation methods developed by this proposal will enable future discoveries by independent AD researchers. This proposal aligns with the NIA Strategic Direction seeking to "identify and understand the genetic, molecular and cellular mechanisms underlying the pathogenesis of AD."
项目总结/文摘

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating Proteomics Imputation Methods with Improved Criteria
  • DOI:
    10.1021/acs.jproteome.3c00205
  • 发表时间:
    2023-10-20
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Harris,Lincoln;Fondrie,William E.;Noble,William S.
  • 通讯作者:
    Noble,William S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lincoln Jeffery Harris其他文献

Lincoln Jeffery Harris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
  • 批准号:
    23K20355
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
  • 批准号:
    23K24782
  • 财政年份:
    2024
  • 资助金额:
    $ 3.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了