Engineering a dynamic three-dimensional in vitro platform for the investigation of human Type 1 Diabetes immunopathogenesis
设计用于研究人类 1 型糖尿病免疫发病机制的动态三维体外平台
基本信息
- 批准号:10677617
- 负责人:
- 金额:$ 4.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdhesionsAffectAnimalsAnoikisAntigensAutoimmune DiseasesBeta CellBindingBiocompatible MaterialsBiologicalBiological AssayBiomimeticsBlood VesselsC-PeptideCD8-Positive T-LymphocytesCRISPR/Cas technologyCXCL10 geneCell CommunicationCell Surface ReceptorsCell modelCell physiologyCell surfaceCellsCellular StructuresClinicalClinical TrialsCoculture TechniquesComplexControlled EnvironmentCytotoxic T-LymphocytesDataDimensionsDiseaseDisease ProgressionDistressEncapsulatedEngineeringEnvironmental Risk FactorExtracellular MatrixFamily suidaeFunctional disorderG6PC2 geneGenesGoalsHemorrhageHomingHumanHydrogelsImageImage AnalysisImmuneIn SituIn VitroInduction of ApoptosisInsulinInsulin-Dependent Diabetes MellitusInterventionInvadedInvestigationIslets of LangerhansKnowledgeMacrophageMediatingMediatorMembraneMicrofluidic MicrochipsMicrofluidicsMusNeuropathyNutrientOrganOvalbuminPancreasPathogenesisPathway interactionsPatternPeripheralPharmaceutical PreparationsPreventionProtocols documentationRiskRoleSignal TransductionSourceStimulusSystemT-Cell ReceptorT-LymphocyteTechnologyTestingTherapeuticTherapeutic InterventionTimeTranslatingWorkblood glucose regulationcell behaviorcell injurycell killingcell motilitycell replacement therapychemokinecomorbidityconfocal imagingcostcytokinecytotoxic CD8 T cellscytotoxicitydiabetes pathogenesisendocrine pancreas developmentexperimental studyhistological specimensimmune activationimmunopathologyimprovedin situ imagingin vitro Modelinnovationinsightisletmicrophysiology systemmigrationmouse modelpreventscreeningspatial integrationtherapy outcometool
项目摘要
PROJECT SUMMARY/ABSTRACT
Type 1 Diabetes (T1D) is an autoimmune disease caused by aberrant T-cell mediated targeted destruction of
insulin-producing beta cells in the pancreas, resulting in loss of blood glucose regulation, with increased long-
term risks of vascular and neuropathic comorbidities. Despite the fact that T1D is one of the most studied organ-
specific autoimmune diseases, the various strategies aimed at intervention, prevention, or reversal of this
disease have failed to succeed due to incomplete knowledge about the precise mechanisms of their action, as
only peripheral assessments of systemic impacts (e.g., circulating cytokine changes, C-peptide levels) are
feasible. This lack of mechanistic understanding of these interventions, as well as substantial time and cost of
clinical trials, is a profound obstacle in improving therapeutic outcomes. To address these significant knowledge
gaps, there is a substantial clinical need to develop human-based ex vivo systems capable of intimately studying
the interplay of islets and immune cells, as well as the contribution of environmental factors on immune cell
activation, homing, and cytotoxicity. The primary hypothesis of this proposal is that the development of an islet-
immune platform has the potential to provide unique insight into T1D, with investigation of activation pathways
and screening of interventional approaches. Thus, the objective of this proposal is to engineer, validate, and
utilize a unique in vitro 3-D platform for the interrogation of human T1D immunopathogenesis by converging
innovative cells with biomaterials, in situ imaging, and microphysiological systems (MPS). Aim 1 will seek to
establish and validate this 3D biomaterial-based co-culture platform. To validate the system, a tiered approach,
building from single antigen murine model cells to human T1D-antigen cells, will be employed. Once validated,
Aim 2 will translate this platform to study human-centric T1D-relevant pathways and interventions. Finally, Aim
3 will seek to integrate spatial and fluidic features by translating the 3D material to an established
microphysiological system (MPS) platform, which will permit the study of T cell migration from a fluidic
microenvironment to the beta cell niche. Results from this proposal should provide a validated and enabling tool
for the study of human T1D-relevant pathophysiology, interventions, and therapeutics. While the proposed field
of application for this platform is T1D, other autoimmune diseases can benefit from this engineered benchtop
platofrm, as they share homologous hallmarks of immune cell dysregulation.
项目总结/文摘
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes.
- DOI:10.1016/j.actbio.2021.05.039
- 发表时间:2021-10-01
- 期刊:
- 影响因子:9.7
- 作者:Samojlik, Magdalena M.;Stabler, Cherie L.
- 通讯作者:Stabler, Cherie L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Magdalena M Samojlik其他文献
Magdalena M Samojlik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Magdalena M Samojlik', 18)}}的其他基金
Engineering a dynamic three-dimensional in vitro platform for the investigation of human Type 1 Diabetes immunopathogenesis
设计用于研究人类 1 型糖尿病免疫发病机制的动态三维体外平台
- 批准号:
10460123 - 财政年份:2021
- 资助金额:
$ 4.19万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 4.19万 - 项目类别:
Research Grant