Methods for multi-ancestry and multi-trait fine-mapping and genetic risk prediction

多祖先、多性状精细定位和遗传风险预测方法

基本信息

  • 批准号:
    10678066
  • 负责人:
  • 金额:
    $ 3.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-25 至 2026-06-24
  • 项目状态:
    未结题

项目摘要

Project Summary: Two fundamental goals in genetic epidemiology are the identification of genetic variants that cause disease (fine-mapping) and the development of polygenic risk scores (PRS) that predict individual- level disease risk using genetic information. As genetic datasets expand, these goals become increasingly realistic. However, most genetic datasets overrepresent European populations, limiting the generalizability of scientific findings, the discovery of causal variants, and the accuracy of PRS in non-European populations. If unaddressed, differences in PRS accuracy will widen ancestry-based health disparities. Most methods in genetic epidemiology consider one ancestry and disease at a time. This research proposes methods for causal variant identification and genetic risk prediction that share information across ancestries and diseases. The first aim is to develop a method for fine-mapping using data from multiple ancestry groups. Causal variant identification provides insight into disease etiology and helps researchers identify drug targets. The sum of single effects (SuSiE) model is a powerful approach for fine-mapping in a single population. Incorporating data from multiple populations can greatly improve fine-mapping due to ancestry-based differences in patterns of correlation between variants and the presence of variants with causal effects in some, but not all ancestries. In this aim, MultiSuSiE, a multi-population fine-mapping method motivated by SuSiE will be developed and applied. SuSiE provides substantial benefits in terms of speed, power, and interpretability compared to other fine-mapping methods. MultiSuSiE will bring the state-of-the-art in fine-mapping to the multi-ancestry context. The second aim is to develop and apply ssCTPR, a summary statistic based PRS method that leverages shared information across diseases. PRS show great promise for informing medical treatment decisions and disease screening interventions. A recent method, cross-trait penalized regression (CTPR), boosts prediction accuracy by leveraging shared genetic bases across diseases but requires difficult-to-obtain individual-level data. In this aim, ssCTPR, a multi-trait summary statistic-based method motivated by CTPR will be developed and applied. ssCTPR is innovative in its statistical approach: ssCTPR will jointly model variants and diseases, use penalized regression, and share information across traits using a Laplacian quadratic penalty that is effective in the multi-disease setting, but has not been investigated using summary statistics. The third aim is to develop a method that uses the methodological advances of aims 1 and 2 to improve PRS prediction in non-European populations. PRS prediction accuracy in non-European populations is much lower than in European populations. As PRS enter the clinic, populations with inequitable health outcomes will fail to benefit from the latest in precision medicine innovation. In this aim, MultiPolyPred, a method that models individual risk using multi-ancestry fine-mapping and a multi-disease PRS will be developed and applied. Our method will be the only non-European PRS method to leverage multi-ancestry fine-mapping.
项目概述:遗传流行病学的两个基本目标是遗传变异的鉴定

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jordan Rossen其他文献

Jordan Rossen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Journal of Integrative Plant Biology
  • 批准号:
    31024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

PROJECT 1: From Neurofibroma to MPNST: Models, Biology and Translation to Clinic
项目 1:从神经纤维瘤到 MPNST:模型、生物学和临床转化
  • 批准号:
    10270581
  • 财政年份:
    2015
  • 资助金额:
    $ 3.99万
  • 项目类别:
PROJECT 1: From Neurofibroma to MPNST: Models, Biology and Translation to Clinic
项目 1:从神经纤维瘤到 MPNST:模型、生物学和临床转化
  • 批准号:
    10494103
  • 财政年份:
    2015
  • 资助金额:
    $ 3.99万
  • 项目类别:
Novel OA-markers by integrating basic biology and clinic
结合基础生物学和临床的新型 OA 标记物
  • 批准号:
    7125479
  • 财政年份:
    2003
  • 资助金额:
    $ 3.99万
  • 项目类别:
Novel OA-markers by integrating basic biology and clinic
结合基础生物学和临床的新型 OA 标记物
  • 批准号:
    6742962
  • 财政年份:
    2003
  • 资助金额:
    $ 3.99万
  • 项目类别:
Novel OA-markers by integrating basic biology and clinic
结合基础生物学和临床的新型 OA 标记物
  • 批准号:
    6804062
  • 财政年份:
    2003
  • 资助金额:
    $ 3.99万
  • 项目类别:
Novel OA-markers by integrating basic biology and clinic
结合基础生物学和临床的新型 OA 标记物
  • 批准号:
    7283091
  • 财政年份:
    2003
  • 资助金额:
    $ 3.99万
  • 项目类别:
Novel OA-markers by integrating basic biology and clinic
结合基础生物学和临床的新型 OA 标记物
  • 批准号:
    6951207
  • 财政年份:
    2003
  • 资助金额:
    $ 3.99万
  • 项目类别:
OPTIMIZATION OF HYPERTHERMIA--CLINIC, BIOLOGY, & PHYSICS
热疗的优化——临床、生物学、
  • 批准号:
    2712558
  • 财政年份:
    1992
  • 资助金额:
    $ 3.99万
  • 项目类别:
OPTIMIZATION OF HYPERTHERMIA--CLINIC, BIOLOGY, & PHYSICS
热疗的优化——临床、生物学、
  • 批准号:
    2429638
  • 财政年份:
    1992
  • 资助金额:
    $ 3.99万
  • 项目类别:
OPTIMIZATION OF HYPERTHERMIA--CLINIC, BIOLOGY, & PHYSICS
热疗的优化——临床、生物学、
  • 批准号:
    2088126
  • 财政年份:
    1992
  • 资助金额:
    $ 3.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了