Mechanisms of neural compensation in the retina and dysfunction in congenital stationary night blindness
先天性静止性夜盲症视网膜神经代偿机制及功能障碍
基本信息
- 批准号:10678730
- 负责人:
- 金额:$ 4.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAddressAdoptedAffectAnatomyApplications GrantsArchitectureAxonBehaviorBehavioralBiological AssayBiophysicsBrainCellsClustered Regularly Interspaced Short Palindromic RepeatsCodeCollaborationsCommunicationCompensationComplementConfocal MicroscopyCoupledDataDiseaseElectrophysiology (science)ElementsEquilibriumEyeFosteringFunctional disorderGene DeletionGenerationsGenesGenotypeGlutamate ReceptorHeterozygoteHumanImmunohistochemistryInheritedIon ChannelKnock-outKnockout MiceKnowledgeLightMapsMeasuresMembraneMetabotropic Glutamate ReceptorsModelingMusMutationNeuronsNeurotransmitter ReceptorNight BlindnessOutputPathway interactionsPatientsPatternPerceptionPersonsPhotoreceptorsPhysiologyProcessPropertyResearchResearch TrainingRetinaRetinal DiseasesRetinal Ganglion CellsRoleSignal PathwaySignal TransductionSodium ChannelStructureSynapsesTherapeuticTrainingTravelVisualVisual PerceptionVisuospatialWorkbehavioral studyblindexperimental studyextracellularganglion cellhigh resolution imagingimprovedinsightinterestluminancemicroscopic imagingmutantneuralneural circuitneuromechanismneuronal excitabilityneurophysiologynull mutationpatch clampreceptor expressionresponseretinal neuronskillstransmission processvisual informationvoltagevoltage clamp
项目摘要
PROJECT SUMMARY/ABSTRACT
The retina is comprised of neural circuit ensembles that communicate through connections called synapses to
generate visual perception and behavior. Retinal diseases cause signaling deficits that derail this communication
and block information flow traveling from the retina to the brain. Severe congenital stationary night blindness is
of particular interest because despite complete suppression of signal transmission through the on retinal pathway
that signals light increments, the on neural circuitry is anatomically intact. Alpha ganglion cells, the primary output
neurons of retinal pathways that code for specific visual features, receive excitatory and inhibitory synaptic
inputs, integrate these inputs across their dendritic compartments, and generate and transmit trains of action
potentials to the brain. We know that neural circuits can adopt diverse strategies to conduct precise synaptic
computations and generate response properties, however, the cellular and synaptic factors prone to alteration
during retinal diseases are not well understood.
This proposal seeks to address important unanswered questions about the mechanisms of neural compensation
that occur in response to specific signaling deficits in well-defined alpha retinal output circuits. Using a set of
neurophysiological and anatomical approaches, these experiments will define how intrinsic properties and
synaptic computations of alpha retinal ganglion cells are altered when the synaptic inputs and balance of
excitation/inhibition that a neuron receives is perturbed. Two CRISPR-edited knockout models of the principal
glutamate receptor of the on retinal pathway, mGluR6, will be used to study neural compensation in the inner
retina across homozygous (100% block) and heterozygous (50% block) conditions. We will correlate single cell
electrophysiology with high resolution imaging and visual behavior assays to complement observations across
the cellular, synaptic, and behavioral levels. Together, the proposed experiments stand to significantly deepen
our mechanistic understanding of the substrates of neural compensation in the inner retina and define the cellular
and synaptic deficits of severe congenital stationary night blindness.
项目摘要/摘要
视网膜由神经回路集合组成,它们通过称为突触的连接进行通信
产生视觉感知和行为。视网膜疾病导致信号缺陷,使这种交流脱轨
并阻断从视网膜到大脑的信息流。严重的先天性静止性夜盲
特别令人感兴趣的是,尽管通过视网膜上通路的信号传输完全被抑制
发出光增量的信号,ON神经回路在解剖学上是完整的。阿尔法神经节细胞,主要输出
视网膜通路神经元编码特定的视觉特征,接受兴奋性和抑制性突触
输入,将这些输入整合到它们的树枝状隔间,并产生和传输行动序列
对大脑的潜在影响。我们知道,神经回路可以采用不同的策略来进行精确的突触
然而,细胞和突触因素容易发生变化
在此期间,人们对视网膜疾病还没有很好的了解。
这项提议试图解决有关神经补偿机制的重要未解问题
这是由于明确定义的阿尔法视网膜输出回路中的特定信号缺陷而发生的。使用一组
神经生理学和解剖学方法,这些实验将定义内在特性和
视网膜神经节细胞的突触计算在突触输入和
神经元接受的兴奋/抑制是被干扰的。两个CRISPR编辑的主体淘汰赛模型
视网膜上通路的谷氨酸受体mGluR6将用于研究视网膜内部的神经补偿
视网膜跨越纯合子(100%阻塞)和杂合子(50%阻塞)条件。我们将把单个细胞关联起来
电生理学和高分辨率成像和视觉行为分析,以补充观察
细胞、突触和行为水平。总而言之,拟议中的实验将显著深化
我们对视网膜内部神经补偿底物的机械理解,并定义了细胞
以及严重先天性静止性夜盲的突触缺陷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Omar Khoussine其他文献
Jacob Omar Khoussine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 4.11万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 4.11万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 4.11万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 4.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 4.11万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 4.11万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 4.11万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 4.11万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 4.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 4.11万 - 项目类别: