Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
基本信息
- 批准号:10678108
- 负责人:
- 金额:$ 3.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAcuteAddressAffectAgeAlgorithmsAsian populationCOVID-19Cardiovascular DiseasesCharacteristicsChronicClassificationClinicalClinical DataComputer ModelsComputerized Medical RecordComputing MethodologiesContinuous Positive Airway PressureDataData SetDementiaDiabetic NephropathyDiagnosisDiseaseDisparityDrowsy DrivingEthnic OriginExhibitsFoundationsFunctional disorderFutureGenderGeographic LocationsGrantIndividualInterventionIntuitionInvestigationMachine LearningMeasurementMetabolic syndromeMethodsModelingModernizationObstructive Sleep ApneaOperative Surgical ProceduresOutcomeOutcomes ResearchPatient CarePatientsPatternPerformancePersonsPhenotypePhysiciansPopulationPrevalenceProcessQuestionnairesRaceRecommendationResearchResearch EthicsResourcesRiskSeveritiesSleep Apnea SyndromesSocioeconomic StatusSubgroupSymptomsTestingTimeTranslatingVehicle crashWomanbenefit sharingcareerclinical practiceclinically actionablecomorbiditycompliance behaviordemographicsimprovedindividual patientinsightmachine learning classifiermachine learning predictionmodel buildingneuropsychiatric disorderoutcome disparitiespatient screeningpredictive modelingrisk predictionskillstreatment effecttreatment guidelinestreatment responsetreatment strategy
项目摘要
PROJECT SUMMARY
Obstructive sleep apnea (OSA) is a sleep-related breathing disorder associated with major co-morbidities and is
estimated to affect nearly one billion people worldwide. Moreover, there are differences in prevalence, diagnosis
rates, and co-morbid outcomes for OSA based on the demographics of a patient, such as age, race, and gender.
The diversity of the clinical manifestations, objective measurements, and outcomes – the phenotype – of OSA
underscores the opportunity for predictive models to improve care of patients with OSA. Predicting future (i.e. 5-
year post-diagnosis) risks of OSA co-morbid outcomes and predicting how different treatments for OSA affect
these risks can help clinicians and patients choose the best treatment strategies.
Current OSA outcomes research has key limitations. Prior studies have characterized groups of OSA patients
that exhibit similar characteristics, referred to as sub-phenotypes of OSA. However, these studies have been
limited by analyzing relatively few variables obtainable from questionnaires. To address this limitation, we will
use rich longitudinal electronic medical records (EMR) data to characterize OSA sub-phenotypes and to predict
OSA outcome risks for individual patients. To extract insights from EMR data, we will leverage modern
computational methods based in machine learning (ML). A second major limitation of existing OSA research is
worse predictive model performance for some groups. Model biases have real-world negative implications. The
ubiquitous STOP-BANG questionnaire used to screen patients for further OSA testing performs worse for women
and Asian individuals, leading to potential delayed, under-, or misdiagnosis of OSA in these groups. To address
this limitation, this proposed project will assess and mitigate biases present in our predictive models.
To better understand patient factors associated with OSA outcomes, this project has two aims. In Aim 1
clustering methods will be applied to identify groups of OSA patients who share similar sub-phenotypes
according to combinations of clinical features and objective measurements present in EMR data. Then, sub-
phenotypes will be compared by the rates at which they exhibit different OSA outcomes, providing intuition into
potential underlying pathophysiologic differences. In Aim 2, ML classifiers will be applied to build and validate
algorithmically fair predictive models for future OSA outcome risks as well as effects of OSA treatments. Patient-
specific factors that are consistently associated with differences in OSA outcome risks through Aims 1 and 2 will
provide both personalized insights into treatment options and stronger evidence of underlying pathophysiology
worthy of further investigation.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Borza其他文献
Victor Borza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 3.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 3.28万 - 项目类别:
Standard Grant














{{item.name}}会员




