Investigating Microglia Colonization and Differentiation in the Embryonic Brain
研究胚胎脑中小胶质细胞的定植和分化
基本信息
- 批准号:10678046
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-02 至 2026-05-01
- 项目状态:未结题
- 来源:
- 关键词:AnatomyBiologicalBiologyBrainCellsCentral Nervous SystemCharacteristicsCuesDevelopmentDiseaseEmbryoEndocytosisGene Transfer TechniquesGlial DifferentiationGoalsHealthHomeostasisHumanImageImmuneImmunityInfiltrationInjuryInvestigationKnowledgeLabelLearningLeftLymphangiogenesisLymphaticLymphatic Endothelial CellsMapsMicrogliaModelingMolecularMolecular ProfilingMusMyelogenousMyelopoiesisNatureNeurodevelopmental DisorderNeuronsOccupationsPUVA PhotochemotherapyPericytesPharmaceutical PreparationsPlayPopulationPositioning AttributePregnancyProcessProteinsRoleSourceTestingTransgenic OrganismsTravelVenousWorkYolk SacZebrafishbrain parenchymacell typeglial cell developmentin vivolymphatic vasculaturelymphatic vesselmannose receptormigrationmolecular dynamicsnervous system developmentnetwork architectureneuronal circuitrynoveloptogeneticsprogenitorreceptorresponseresponse to injurytool
项目摘要
ABSTRACT
Microglia are the resident immune cells of the Central Nervous System (CNS). They are positioned at the center of
brain development and function by playing crucial roles in neuronal network architecture and homeostatic surveillance.
Unlike other CNS-resident cells, microglia originate outside the brain, specifically in the embryonic yolk sac (YS).
Before microglia can serve their crucial functions, they must first migrate to and infiltrate the developing brain. The
cellular and molecular dynamics governing this process are not fully understood, and what we do know is based on YS-
derived microglia. However, cre/lox fate mapping studies only map ~30% of all mouse microglia to the YS. This
suggests additional sources and populations of microglia could exist. This has been confirmed in zebrafish, where
microglia have additional, non-YS origins. The discovery of additional microglia populations leaves us with even less
understanding of how microglial precursors seed the brain, especially given that what we do know is from YS-derived
microglia only. To begin to fill this critical gap, we investigated the microglia that seed the embryonic brain. Because
microglia seeding the brain is a highly dynamic process, we utilized timelapse imaging in zebrafish to watch the cells
live. We identified an undescribed cell in the brain that expresses canonical microglia markers, clears debris, and
expands in injury. These microglia-like cells are labeled with Mannose Receptor C, type 1a (mrc1a) and colonize the
brain earlier than known microglia precursors. mrc1a+ microglia are dependent on the mrc1a+ lymphatic vessels sitting
just outside the CNS boundary. These mrc1a+ cells are located within the brain parenchyma and do not associate with
vessels or the brain-border, suggesting they’re not macrophages, perivascular cells, or brain lymphatic endothelial
cells. Despite our discovery of this early-infiltrating population, the dynamics of how this mrc1a+ population colonizes
the brain and expands as microglia are unknown. The implication of mrc1a+ brain-border lymphatics in these processes
is also undetermined. The goal of the proposed study is to investigate the cellular and molecular characteristics
of a novel, mrc1a+ microglia subpopulation as it colonizes, expands, and differentiates in the developing brain. I
will accomplish this by using a combination of in vivo imagine, optogenetic tools, and photoactivatable drugs to carry
out the following aims: 1. Determine if brain-border lymphatic vessels contribute microglial progenitors to the
developing brain. 2. Characterize the molecular profile of mrc1a+ cells as they differentiate into microglia. This work
has the potential to impact a broad spectrum of fields including basic neurodevelopmental biology, neurodevelopmental
disorder and disease, glial biology, and CNS homeostasis by investigating the fundamental dynamics behind early
microglial precursors as they infiltrate the developing brain, expand, and turn on canonical microglia markers.
抽象的
小胶质细胞是中枢神经系统(CNS)的居民免疫细胞。它们位于
通过在神经元网络架构和稳态监视中扮演至关重要的角色,大脑发育和功能。
与其他CNS居民细胞不同,小胶质细胞起源于大脑外部,特别是在胚胎蛋黄(YS)中。
在小胶质细胞可以发挥其关键功能之前,它们必须首先迁移到发育中的大脑并浸润。这
尚未完全了解有关此过程的细胞和分子动力学,我们所知道的是基于ys-
衍生的小胶质细胞。但是,CRE/LOX脂肪图研究仅将所有小鼠小胶质细胞的30%映射到YS。这
建议可能存在小胶质细胞的其他来源和种群。这已在斑马鱼中得到证实
小胶质细胞具有额外的非基本起源。发现其他小胶质细胞的发现使我们的发现更少
了解小胶质细胞如何使大脑种子种子,特别是考虑到我们所知道的是ys衍生的
仅小胶质细胞。为了开始填补这一关键的空白,我们研究了播种胚胎大脑的小胶质细胞。因为
大脑播种的小胶质细胞是一个高度动态的过程,我们利用斑马鱼中的时间幻想成像观看细胞
居住。我们确定了大脑中未描述的细胞,该细胞表达了规范的小胶质细胞标记,清除碎片和
扩大伤害。这些小胶质细胞样细胞用甘露糖受体C,1A型(MRC1A)标记并定居
大脑早于已知的小胶质细胞前体。 MRC1A+小胶质细胞取决于MRC1A+淋巴管
就在CNS边界外。这些MRC1A+细胞位于脑实质内,不与
血管或脑海,表明它们不是巨噬细胞,血管周围细胞或脑淋巴内皮
细胞。尽管我们发现了这种早期浸入的人群,但这种MRC1A+种群如何定居的动态
大脑并扩展,因为小胶质细胞是未知的。 MRC1A+大脑淋巴机在这些过程中的含义
也没有确定。拟议的研究的目的是研究细胞和分子特征
在一个新颖的MRC1A+小胶质细胞亚群中,它在发育中的大脑中膨胀,扩展和区分。我
将通过使用体内想象力,光遗传学工具和光活化药物的组合来实现这一目标
以下目的:1。确定脑海淋巴管是否会造成小胶质祖细胞
发展大脑。 2。表征MRC1A+细胞分化为小胶质细胞时的分子谱。这项工作
有可能影响广泛领域,包括基本神经发育生物学,神经发育
通过研究早期背后的基本动力学,疾病与疾病,神经胶质生物学和中枢神经系统稳态
小胶质细胞前体浸润发育中的大脑,扩展并打开规范的小胶质细胞标记。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Camden Hoover其他文献
Camden Hoover的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
mRNA反式调控基因转录的机制及其生物学功能
- 批准号:32330018
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
增材制造锌镁合金复合椎间融合器降解调控机制与生物学效应研究
- 批准号:52301302
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于脑-脊髓-视神经MRI影像特征的神经免疫疾病影像亚型及其分子生物学机制的多组学研究
- 批准号:82330057
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
秸秆还田下玉/豆间作系统的生物固氮效应及微生物学机制
- 批准号:32301962
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
III-E型CRISPR-Cas系统的结构生物学及其应用研究
- 批准号:32371276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
ロマン主義パラダイムの領域横断的研究―19世紀前半の比較解剖学・地質学・古生物学
浪漫主义范式的跨学科研究:19世纪上半叶的比较解剖学、地质学和古生物学
- 批准号:
24K03740 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Using Natural Mouse Movement to Establish a Developmental "Biomarker" for Corticospinal Damage
利用自然小鼠运动建立皮质脊髓损伤的发育“生物标志物”
- 批准号:
10667807 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Pre-clinical Bruker Albira Si PET/SPECT/CT imaging system
临床前 Bruker Albira Si PET/SPECT/CT 成像系统
- 批准号:
10633022 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
- 批准号:
10663410 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: