Joint longitudinal and survival models for intensive longitudinal data from mobile health studies of smoking cessation
来自戒烟移动健康研究的密集纵向数据的联合纵向和生存模型
基本信息
- 批准号:10677935
- 负责人:
- 金额:$ 4.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsBehavioralBiometryCharacteristicsChronic DiseaseClinical TrialsCollectionComplexComputer ModelsDataData AnalysesData AnalyticsDevelopmentDimensionsDrug usageEcological momentary assessmentEducational workshopEmotionsEnsureEventFundingFutureGenderGoalsHealthHealth TechnologyIncomeIndividualInterventionJointsKnowledgeLinkMeasuresMentorshipMethodologyMethodsMichiganModelingMotivationNational Institute of Drug AbuseOutcomePatternPersonsProcessRandomizedRecurrenceResearchResearch PersonnelRiskRisk FactorsScienceScientific Advances and AccomplishmentsSmokerSmokingSourceStatistical MethodsStatistical ModelsStochastic ProcessesSubstance Use DisorderTimeTrainingUniversitiesVariantWorkWritingadaptive interventionanalytical methodanalytical toolbrief interventioncareerdesigneffective interventionevidence baseexperienceflexibilityimprovedinsightinterestmHealthnegative affectnoveloral communicationpsychologicrandomized trialskillssmoking cessationsocialsustained recoverysymposiumtheoriestime usetooltreatment effectuser-friendly
项目摘要
Project Summary/Abstract
Increasing collection of intensive longitudinal data (ILD) through mobile health (mHealth)-based
approaches, such as ecological momentary assessment (EMA), present a rich source of information for
understanding temporal variations in psychological states key to smoking cessation. However, advances in
statistical methods are needed to fully leverage these rich data to assess interventions and inform the design
of future interventions. In Aims 1 and 2, this proposal seeks to develop a novel statistical model (joint
longitudinal recurrent-event model) and estimation method that will allow for analysis of EMA data from a
smoking cessation study using low-dimensional interpretable states to describe the behavioral phenomenon
and processes related to smoking cessation. By incorporating just-in-time adaptive interventions (JITAIs) into
the model in Aim 3, this project will facilitate assessment of the impact of time-varying adaptive interventions
on a subject’s risk of a future lapse in smoking cessation using data from the Mobile Assistance for Regulating
Smoking (MARS) micro-randomized trial (U01CA229437; PIs: Nahum-Shani, Wetter).
Training goals, which were developed with the mentorship team, include: (i) advancing technical
training in statistical theory and computing, (ii) improving written and oral communication skills, (iii) building
collaborative relationships, and (iv) attending conferences, workshops, and professional development
activities. The proposed research and training will be conducted at the University of Michigan (UM) in the
Department of Biostatistics, which has close ties to the UM Institute for Social Research and a reputation for
excellence in research and training.
Altogether, the statistical methodology proposed in this project will contribute to the science in two key
ways: (i) it will allow for the integration of many different items (e.g. emotions, urge, motivation) in a way that
facilitates interpretation when measuring vulnerability (e.g. risk of lapse) and (ii) its interpretability will
subsequently help inform the design of evidence-based adaptive interventions (e.g. JITAIs) through increased
understanding of the conditions that represent vulnerability. These scientific contributions directly promote the
National Institute on Drug Abuse’s strategic goal of developing “new and improved treatments to help people
with substance use disorders achieve and maintain a meaningful and sustained recovery”. Although presented
in the context of a smoking cessation study, this methodological framework is highly flexible with broad
applicability to mHealth studies of substance use disorders and in other health domains. This novel analytic
method will be freely available in a user-friendly R package, thus facilitating the potential impact on drug-use
research.
项目总结/摘要
通过基于移动的健康(mHealth),
方法,如生态瞬时评估(EMA),提供了丰富的信息来源,
了解戒烟关键的心理状态的时间变化。然而,
需要统计方法来充分利用这些丰富的数据来评估干预措施并为设计提供信息
未来的干预措施。在目标1和2中,该提案寻求开发一种新的统计模型(联合
纵向复发事件模型)和估计方法,将允许分析EMA数据,
戒烟研究使用低维可解释状态来描述行为现象
与戒烟有关的过程。通过将及时适应性干预措施(JITAIs)纳入
目标3中的模型,该项目将促进评估随时间变化的适应性干预措施的影响
使用来自移动的协助调节的数据,
吸烟(MARS)微随机试验(U 01 CA 229437; PI:Nahum-Shani,Wetter)。
培训目标是与辅导小组一起制定的,包括:
统计理论和计算方面的培训,㈡提高书面和口头沟通技能,㈢建立
合作关系,以及(iv)参加会议,研讨会和专业发展
活动拟议的研究和培训将在密歇根大学(UM)进行,
生物统计学系,与UM社会研究所关系密切,
卓越的研究和培训。
总之,本项目提出的统计方法将在两个关键方面对科学做出贡献。
方式:(i)它将允许以一种方式整合许多不同的项目(例如情绪,冲动,动机),
在测量脆弱性(例如失效风险)时便于解释;(ii)其可解释性将
随后,通过增加对基于证据的适应性干预措施(如JITAIs)的了解,
了解代表脆弱性的条件。这些科学贡献直接推动了
国家药物滥用研究所的战略目标是开发“新的和改进的治疗方法,以帮助人们
实现并保持有意义和持续的康复”。尽管呈现
在戒烟研究的背景下,这种方法框架具有高度灵活性,
适用于物质使用障碍的移动健康研究和其他健康领域。这部分析小说
方法将以用户友好的R包形式免费提供,从而促进对药物使用的潜在影响
research.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Madeline Abbott其他文献
Madeline Abbott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Behavioral Insights on Cooperation in Social Dilemmas
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国优秀青年学者研究基金项目
相似海外基金
NSF PRFB FY 2023: Assessing morphological, behavioral, and genetic impacts of methylmercury on spiders.
NSF PRFB 2023 财年:评估甲基汞对蜘蛛的形态、行为和遗传影响。
- 批准号:
2305949 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Fellowship Award
CAREER: Early-life social environments drive behavioral and neural mechanisms of development
职业:早期社会环境驱动行为和神经机制的发展
- 批准号:
2341006 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Continuing Grant
A mobile health solution in combination with behavioral change approach to improve vaccination coverage and timeliness in Bangladesh: A cluster randomized control trial
移动健康解决方案与行为改变方法相结合,以提高孟加拉国的疫苗接种覆盖率和及时性:集群随机对照试验
- 批准号:
24K20168 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
- 批准号:
10751224 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
- 批准号:
2326751 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Continuing Grant
Differentiating innate and conditioned fear in behavioral level using pupillometry and neural level using brain-wide traveling wave
使用瞳孔测量法区分行为水平上的先天性恐惧和条件性恐惧,并使用全脑行波区分神经水平上的先天性恐惧和条件性恐惧
- 批准号:
23K28389 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
- 批准号:
2339999 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Continuing Grant
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
- 批准号:
10824767 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
- 批准号:
2341512 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Continuing Grant
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
- 批准号:
2341513 - 财政年份:2024
- 资助金额:
$ 4.07万 - 项目类别:
Continuing Grant