Development of a Novel Bioinspired Pelvic Organ Prolapse Repair Graft
新型仿生盆腔器官脱垂修复移植物的开发
基本信息
- 批准号:10678635
- 负责人:
- 金额:$ 4.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAdhesionsAdhesivesAdultBehaviorBiochemicalBiocompatible MaterialsBiological AssayBiomechanicsBiomimeticsBioreactorsCell AdhesionCell Culture TechniquesCell Differentiation processCell-Matrix JunctionCellsCharacteristicsClinicalCollagen FiberComplicationCuesDNADataDevelopmentElastasesElasticityElastin FiberElastomersEncapsulatedEngineeringEnzyme-Linked Immunosorbent AssayEtiologyExcisionExhibitsExtracellular MatrixExtracellular Matrix ProteinsFailureFiberFibroblastsFibrosisFoundationsFutureGoalsGraft EnhancementsGynecologicHumanHydrogelsImageImmune responseIn VitroKnowledgeMeasuresMechanical StressMechanicsMicroscopicMicroscopyModelingMyofibroblastNulliparityOperative Surgical ProceduresOryctolagus cuniculusPathologicPathologyPeptidesPhenotypePhysiciansPhysiologicalPolypropylenesPopulationPorosityPostoperative ComplicationsPredispositionProceduresPropertyProteinsProteomicsPtosisPublic HealthReconstructive Surgical ProceduresRepair MaterialRepeat SurgeryResearchRoleSalesScientistSideSiteStructureTechnical ExpertiseTechniquesTechnologyTestingTherapeuticTissuesTrainingTransferenceVaginaWorkbiomaterial compatibilitybiomechanical testcell transformationcollagenasedefined contributiondesignelastomericexperienceexperimental studyimmunogenicimmunogenicityimplant materialin vitro testinginterestiterative designmanufacturemechanical behaviormechanical propertiesmimicrymultiphoton microscopynonhuman primatenoveloperationpelvic organ prolapseprotein distributionprototyperepairedresponsescaffoldskillssuccesssurgery outcometissue repair
项目摘要
Surgical treatments for pelvic organ prolapse (POP) suffer from high complication and reoperation rates, with
70% of native tissue repair operations failing within five years and the FDA halting commercial use of
graft materials for transvaginal procedures. Many of these problematic grafts are repurposed from non-
gynecologic procedures and cannot mimic the properties of the vagina. Recent cell- or protein-enhanced
experimental grafts also do not bridge the technological gap due to mechanical failure and immunogenic DNA
retention. Given the gap in knowledge regarding engineering POP repair grafts less susceptible to failure, our
objective is to obtain novel data on healthy, non-prolapsed vaginal extracellular matrix (vECM) structure and
function to inform devel-opment of a synthetic biomimetic graft. We will define contributions of collagen and
elastin fibers to the mechan-ical behavior of vaginal tissue and use these data as constraints for iterative design
of elastomeric, biocompatible graft components that provide mechanical support and cell adhesion. Then, we
will probe for fibroblast adhesion and absence of pathologic myofibroblast differentiation on these materials.
Our proposed product design is com-posed of a non-degradable 3D printed elastomer mesh encapsulated by a
3D printed hydrogel coating that can be remodeled by surrounding cells. The goal of this proposal is to test
our hypothesis that mechanical and biochemical cues provided by vECM drive cellular organization and
structure of the healthy vagina and can be replicated in a mechanically competent biomimetic POP repair
graft. This hypothesis will be tested via experi-mental techniques in biomechanics, imaging, additive
manufacturing, and bioreactor cell culture. Aim 1 will fur-ther define the relationship between vaginal elasticity
and vECM proteins and produce an elastomeric mesh that minimizes pathologic myofibroblast transformation
by mimicry of vECM fiber mechanics. This aim will be achieved through vECM elasticity profiling, 3D
printing of biocompatible elastomers to form a mesh with similar mechanical properties, and assessment of
cellular response to this mesh in a tension bioreactor. Aim 2 will define tissue-specific cell adhesion
dynamics and produce a composite 3D printed material capable of partial degradation embedded with
physiologic distributions of key extracellular matrix proteins to promote cell adhe-sion. This aim will be
achieved via microscopy and proteomic analysis of vECM, 3D printing of a partially de-gradable coating
mimicking vECM microstructure and protein distribution, and assessment of cellular adhesion to this coating
in a tension bioreactor. The work detailed through this proposal will answer critical questions regarding the
structure-function properties of vECM and produce two novel materials with therapeutic potential for POP
repair when used together or separately as potential enhancements to commercially available materials. This
research is inspired by my own interests in pathology, surgical outcomes, and host response to engineered
biomaterials. Completing this proposal will provide me with intellectual and technical skills that are essential for
my future work as a physician-scientist at the intersection of biomaterials, pathology, and reconstructive
surgery.
盆腔器官脱垂(POP)的手术治疗具有较高的并发症和再手术率,
70%的天然组织修复手术在五年内失败,FDA停止了其商业使用
用于经阴道手术的移植材料。这些有问题的移植物中有许多是从非移植物中重新利用的,
妇科手术,不能模仿阴道的特性。近期细胞或蛋白增强
由于机械故障和免疫原性DNA,
潴留考虑到工程POP修复移植物不易失败方面的知识差距差距,我们
目的是获得关于健康、非脱垂阴道细胞外基质(vECM)结构的新数据,
功能,以告知合成仿生移植物的开发。我们将定义胶原蛋白的贡献,
弹性蛋白纤维的阴道组织的机械行为,并使用这些数据作为迭代设计的约束条件
由弹性体、生物相容性移植组件组成,提供机械支撑和细胞粘附。然后我们
将探测这些材料上的成纤维细胞粘附和病理性肌成纤维细胞分化的缺乏。
我们提出的产品设计由不可降解的3D打印弹性体网片组成,
3D打印的水凝胶涂层可以被周围的细胞重塑。这项提案的目的是测试
我们假设vECM提供的机械和生化线索驱动细胞组织,
结构的健康阴道,并可以复制在一个机械能力仿生POP修复
移植物这一假设将通过生物力学、成像、增材制造等方面的实验技术进行检验。
生产和生物反应器细胞培养。目标1将进一步定义阴道弹性之间的关系
和vECM蛋白质,并产生一种弹性网,
通过模仿vECM纤维力学。这一目标将通过vECM弹性分析、3D
印刷生物相容性弹性体以形成具有相似机械性能的补片,并评估
在张力生物反应器中细胞对这种网的反应。目标2将定义组织特异性细胞粘附
动态和生产复合3D打印材料能够部分降解嵌入与
促进细胞粘附的关键细胞外基质蛋白的生理分布。这一目标将是
通过vECM的显微镜和蛋白质组学分析实现,部分可降解涂层的3D打印
模拟vECM微结构和蛋白质分布,并评估细胞与该涂层的粘附
在张力生物反应器中。本提案中详细介绍的工作将回答有关
vECM结构-功能特性,并产生两种具有治疗POP潜力的新材料
作为市售材料的潜在增强,在一起使用或单独使用时进行维修。这
研究的灵感来自于我自己对病理学、手术结果和宿主对工程反应的兴趣
生物材料完成本计划书将为我提供必要的知识和技术技能,
我未来的工作是作为一个物理学家,科学家在生物材料,病理学和重建的交叉点
手术
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Morgan Lee Egnot其他文献
Morgan Lee Egnot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 4.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 4.9万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 4.9万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 4.9万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 4.9万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 4.9万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 4.9万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant














{{item.name}}会员




