Matrix biophysics and pericyte mechanobiology in (patho)physiological angiogenesis

(病理)生理性血管生成中的基质生物物理学和周细胞力学生物学

基本信息

  • 批准号:
    10680994
  • 负责人:
  • 金额:
    $ 58.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-05 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The long-term arc of this project is expected to engineer vascularization of tissue deficits and advance treatment of microvascular diseases including myocardial infarction, atherosclerosis, pulmonary arterial hypertension, aneurysm, peripheral artery disease, bone repair, volumetric muscle loss, diabetic wounds, and cancer. To achieve this goal, the project will advance our fundamental understanding of how local fibrous extracellular matrix (ECM) biophysical cues dynamically influence pericytes during neovessel formation. The role of the endothelial cell in vasculogenesis and angiogenesis is well recognized, yet the pericyte’s full scope of work is less understood, despite its known essential role in proper vascular development. We made a surprising observation that pericytes exhibit phenotypic plasticity when they spontaneously assemble into 3D spheroids and reversibly form and adopt endothelial markers when cultured on native and synthetic fibrous biomaterials in vitro, but not on 2D substrates. Akin to vasculogenic blood islands, tip cell-like protrusions sprout and retract from these spheroids comprised of pericytes that transdifferentiate to express endothelial markers. Other studies by our team revealed that matrix fiber diameter and architecture dictate cell morphology, the mode and rate of cell migration, cell force exertion, protrusion dynamics, and nuclear shape associated with heterochromatic rearrangements. These published and preliminary studies gave rise to a central hypothesis that various matrix biophysical parameters differentially direct neovessel formation by modulating pericyte migration, contraction, protrusion, and phenotypic plasticity. To test this hypothesis, we will further develop a nanofiber cell force sensing platform to mimic (patho)physiological ECMs through exquisite tunable control of ECM fiber biophysical parameters (e.g., diameter, density, alignment). With consideration of disease-simulating biochemical milieu (e.g., oxygen tension, reactive oxygen species, and inflammatory cytokines), experiments performed under Aim 1 will identify how matrix biophysical cues alter pericyte migration, contractility, and protrusion dynamics. Aim 2 experiments will develop the in vitro nanofiber scaffold system to selectively transplant patterned spheroids in vivo for neovessel formation through engineered control of pericyte plasticity and transdifferentiation. The project’s translational impact will be novel methods of controlling microvascular expansion and regression in diseased, damaged, and engineered tissues.
项目摘要 该项目的长期弧预计将工程化组织缺损的血管化, 治疗微血管疾病,包括心肌梗塞、动脉粥样硬化、肺动脉 高血压、动脉瘤、外周动脉疾病、骨修复、肌肉体积损失、糖尿病伤口,以及 癌为了实现这一目标,该项目将推进我们对局部纤维 细胞外基质(ECM)生物物理信号在新血管形成期间动态地影响周细胞。的 内皮细胞在血管发生和血管生成中的作用是公认的,但周细胞的整个范围 尽管已知它在正常的血管发育中起着重要作用,但对它的了解较少。我们做了一个 令人惊讶的观察是,周细胞在自发组装成3D结构时表现出表型可塑性, 当在天然和合成纤维上培养时, 生物材料在体外,但不是在2D基板上。类似于血管生成的血岛,尖端细胞样突起 从这些由周细胞组成的球状体中萌发和缩回,周细胞转分化以表达内皮细胞 标记。我们团队的其他研究表明,基质纤维直径和结构决定了细胞 形态学、细胞迁移的模式和速率、细胞作用力、突起动力学和核形状 与异染色质重排有关。这些已发表的和初步的研究引起了一个 中心假设,各种基质生物物理参数差异指导新血管形成, 调节周细胞迁移、收缩、突出和表型可塑性。为了验证这个假设,我们将 进一步开发一个神经细胞力传感平台,通过精致的 ECM纤维生物物理参数的可调控制(例如,直径、密度、排列)。在考虑 模拟疾病的生物化学环境(例如,氧张力、活性氧和炎症 细胞因子),在目标1下进行的实验将确定基质生物物理线索如何改变周细胞 迁移、收缩性和突出动力学。目的2:研制体外生物可降解支架材料 通过工程控制选择性移植体内图案化球状体以形成新血管的系统 周细胞可塑性和转分化。该项目的翻译影响将是新的方法, 控制患病、受损和工程化组织中的微血管扩张和消退。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amrinder Nain其他文献

Amrinder Nain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 58.18万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.18万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 58.18万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.18万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 58.18万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 58.18万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.18万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 58.18万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 58.18万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.18万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了