Intracellular and Intercellular Network Rewiring and Hidden Driver Inference from Single-Cell Data
细胞内和细胞间网络重新布线以及来自单细胞数据的隐藏驱动程序推断
基本信息
- 批准号:10680568
- 负责人:
- 金额:$ 33.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-09 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAlgorithmsBayesian AnalysisBayesian MethodBayesian ModelingBiological AssayBiological MarkersBiological ProcessBiomedical ResearchBreast Cancer ModelCancer RelapseCell CommunicationCellsClinicalClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsCompanionsCompensationComputational BiologyComputational algorithmDataDevelopmentDiagnosisDiseaseDropoutDrug resistanceEngineeringEpigenetic ProcessEpithelial CellsExposure toFoundationsGenesGenomicsGoalsHeterogeneityHomeostasisImmunologicsImmunologyImmunotherapyIn VitroInformation TheoryInvestigationLaboratoriesMammary glandMapsMediatingMessenger RNAMetabolicModelingModificationMolecularMusNatureNeoplasm MetastasisNetwork-basedOrganOutcomePaperPathologicPatient CarePatientsPhysiciansPreventionPrognosisProteinsProteomicsPublicationsResistanceReverse engineeringSaint Jude Children&aposs Research HospitalSignal TransductionSignaling ProteinSystems BiologyTechnologyTherapeuticTissuesTranslatingTranslationsTumor Immunityalgorithm developmentcancer subtypescancer therapycell typecomputational pipelinescomputer frameworkcomputerized toolsdifferential expressiondrug sensitivityfunctional genomicsgenome-widehuman diseaseimprovedin silicoin vitro Assayin vivoinsightknowledge basemalignant breast neoplasmmammarynovelpatient stratificationprecision oncologysingle-cell RNA sequencingstem cellstargeted treatmenttherapeutic targettranscriptometreatment strategytumortumorigenesis
项目摘要
PROJECT SUMMARY
Biological processes operate through molecular networks at the cellular level, and through cell–cell networks at
the tissue/organ level. Deciphering the “wiring” and “rewiring” of these networks under healthy and pathological
conditions is a fundamental yet challenging goal of biomedical research. The emergence of single-cell RNA
sequencing (scRNA-seq) has presented an unprecedented opportunity to achieve this goal by enabling genome-
wide quantification of mRNA in thousands of cells simultaneously and overcoming the heterogeneity problem of
bulk omics data. However, deep analysis of scRNA-seq data is challenging because only a small fraction of the
transcriptome of each cell can be captured. No sophisticated computational tools are available to systemically
reverse engineer intracellular gene–gene (especially signaling) networks and intercellular cell–cell interaction
networks from single-cell omics data. Signaling proteins and epigenetic factors are crucial drivers of network
rewiring and are most likely druggable, making them ideal therapeutic targets. Unfortunately, it is often difficult
to unbiasedly identify many of these drivers (hence known as hidden drivers) because they may not be
genetically altered or differentially expressed at the mRNA or protein levels, but rather are altered by
posttranslational or other modifications. We have developed systems biology algorithms to expose hidden drivers
from bulk omics data for antitumor immunity, tumorigenesis, and drug resistance. However, it remains even more
challenging to reveal cell type–specific hidden drivers from scRNA-seq data because of the “dropout” effects.
Using our established state-of-the-art scRNA-seq platform, we profiled >100,000 epithelial cells from mouse
mammary gland. Our ultradeep scRNA-seq profiling identified new subsets of somatic mammary stem cells
(MaSCs) and shed light on the long-standing debate over the identities of multipotent and unipotent MaSCs.
Therefore, building upon our expertise in systems biology, our robust preliminary results, and our established
collaborations with leaders in the fields of breast cancer and immunology, we propose to develop computational
algorithms to reverse engineer intracellular gene-wise and intercellular cell-wise networks (Aim 1), determine
cell type–specific hidden drivers and their network rewiring (Aim 2), from single-cell omics data, and translate
findings toward biomarkers and therapeutics to improve patient care (Aim 3). We will use information theory and
Bayesian modeling in the development of these algorithms. We will use MaSCs and our breast cancer models
as a proof of concept. With the increasing affordability of single-cell omics technologies, our algorithms can have
a significant impact on many fields of biomedical investigation. For example, delineation of network rewiring and
of critical drivers in stem cells and their niches will provide vital insights into cancer metastasis and relapse, and
lay the foundation for understanding and overcoming the resistance of tumors to immunotherapies. Network-
inferred hidden drivers are potential nonmutant therapeutic targets, and network-based biomarkers have
tremendous potential to better stratify patients for precision cancer medicine.
项目摘要
生物过程在细胞水平上通过分子网络进行,在细胞水平上通过细胞-细胞网络进行。
组织/器官水平。在健康和病理状态下,破译这些网络的“布线”和“重新布线”
条件是生物医学研究的一个基本但具有挑战性的目标。单细胞RNA的出现
scRNA-seq技术为实现这一目标提供了前所未有的机会,
同时在数千个细胞中广泛定量mRNA,并克服了
批量组学数据。然而,scRNA-seq数据的深入分析是具有挑战性的,因为只有一小部分的scRNA-seq数据是不完整的。
可以捕获每个细胞的转录组。没有复杂的计算工具可以系统地
反向工程细胞内基因-基因(尤其是信号)网络和细胞间细胞-细胞相互作用
从单细胞组学数据构建网络。信号蛋白和表观遗传因子是网络的关键驱动因素
重新连接,并且很可能是药物,使它们成为理想的治疗目标。不幸的是,这往往很困难
无偏见地识别这些驱动程序中的许多(因此称为隐藏驱动程序),因为它们可能不是
在mRNA或蛋白质水平上发生遗传改变或差异表达,而是通过
翻译后或其它修饰。我们开发了系统生物学算法来揭露隐藏的驱动因素
从抗肿瘤免疫、肿瘤发生和耐药性的批量组学数据中。然而,它仍然更加
由于“脱落”效应,从scRNA-seq数据揭示细胞类型特异性隐藏驱动因素具有挑战性。
使用我们建立的最先进的scRNA-seq平台,我们分析了来自小鼠的> 100,000个上皮细胞。
乳腺我们的超深scRNA-seq分析鉴定了体乳腺干细胞的新亚群
本研究旨在阐明多能和单能MaSCs的特性,并阐明关于多能和单能MaSCs特性的长期争论。
因此,基于我们在系统生物学方面的专业知识,我们强大的初步结果,以及我们建立的
与乳腺癌和免疫学领域的领导者合作,我们建议开发计算
反向工程细胞内基因和细胞间细胞网络的算法(目标1),确定
细胞类型特定的隐藏驱动程序和它们的网络重新布线(目标2),从单细胞组学数据,并翻译
生物标志物和治疗方法的发现,以改善患者护理(目标3)。我们将使用信息理论,
贝叶斯建模在这些算法的发展。我们将使用MaSCs和乳腺癌模型
作为概念验证。随着单细胞组学技术的日益普及,我们的算法可以
对生物医学研究的许多领域产生了重大影响。例如,划定网络重新布线和
干细胞及其利基的关键驱动因素将为癌症转移和复发提供重要见解,
为了解和克服肿瘤对免疫治疗的耐药性奠定基础。网络-
推断隐藏的驱动程序是潜在的非突变治疗靶点,基于网络的生物标志物具有
巨大的潜力,以更好地分层患者的精确癌症医学。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatiotemporal regulation of cholangiocarcinoma growth and dissemination by peritumoral myofibroblasts in a Vcam1-dependent manner.
- DOI:10.1038/s41388-023-02639-0
- 发表时间:2023-04
- 期刊:
- 影响因子:8
- 作者:Tian C;Li L;Pan Q;Xu B;Li Y;Fan L;Brown A;Morrison M;Dey K;Yang JJ;Yu J;Glazer ES;Zhu L
- 通讯作者:Zhu L
A developmentally prometastatic niche to hepatoblastoma in neonatal liver mediated by the Cxcl1/Cxcr2 axis.
- DOI:10.1002/hep.32412
- 发表时间:2022-11
- 期刊:
- 影响因子:13.5
- 作者:Fan, Li;Pan, Qingfei;Yang, Wentao;Koo, Selene C.;Tian, Cheng;Li, Liyuan;Lu, Meifen;Brown, Anthony;Ju, Bensheng;Easton, John;Ranganathan, Sarangarajan;Shin, Soona;Bondoc, Alexander;Yang, Jun J.;Yu, Jiyang;Zhu, Liqin
- 通讯作者:Zhu, Liqin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiyang Yu其他文献
Jiyang Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiyang Yu', 18)}}的其他基金
Intracellular and Intercellular Network Rewiring and Hidden Driver Inference from Single-Cell Data
细胞内和细胞间网络重新布线以及来自单细胞数据的隐藏驱动程序推断
- 批准号:
10009449 - 财政年份:2019
- 资助金额:
$ 33.99万 - 项目类别:
Intracellular and Intercellular Network Rewiring and Hidden Driver Inference from Single-Cell Data
细胞内和细胞间网络重新布线以及来自单细胞数据的隐藏驱动程序推断
- 批准号:
10260637 - 财政年份:2019
- 资助金额:
$ 33.99万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 33.99万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 33.99万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 33.99万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 33.99万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 33.99万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 33.99万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 33.99万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 33.99万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 33.99万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 33.99万 - 项目类别:
Research Grant