Intracellular and Intercellular Network Rewiring and Hidden Driver Inference from Single-Cell Data
细胞内和细胞间网络重新布线以及来自单细胞数据的隐藏驱动程序推断
基本信息
- 批准号:10260637
- 负责人:
- 金额:$ 33.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-09 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBayesian AnalysisBayesian MethodBayesian ModelingBiological AssayBiological MarkersBiological ProcessBiomedical ResearchBreast Cancer ModelCancer RelapseCell CommunicationCellsClinicalClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsCompanionsComputational BiologyComputational algorithmDataDevelopmentDiagnosisDiseaseDropoutDrug resistanceEngineeringEpigenetic ProcessEpithelial CellsExposure toFoundationsGenesGenomicsGoalsHeterogeneityHomeostasisImmunologicsImmunologyImmunotherapyIn VitroInformation TheoryInvestigationLaboratoriesLightMammary glandMapsMediatingMessenger RNAMetabolicModelingModificationMolecularMusNatureNeoplasm MetastasisNetwork-basedOrganOutcomePaperPathologicPatient CarePatientsPhysiciansPreventionPrognosisProteinsProteomicsPublicationsResistanceSaint Jude Children&aposs Research HospitalSignal TransductionSignaling ProteinSystems BiologyTechnologyTherapeuticTissuesTranslatingTranslationsTumor Immunityalgorithm developmentbasecancer subtypescancer therapycell typecomputational pipelinescomputer frameworkcomputerized toolsdifferential expressiondrug sensitivityfunctional genomicsgenome-widehuman diseaseimprovedin silicoin vitro Assayin vivoinsightknowledge basemalignant breast neoplasmmammarynovelpatient stratificationprecision oncologysingle-cell RNA sequencingstem cellstargeted treatmenttherapeutic targettranscriptometreatment strategytumortumor immunologytumorigenesis
项目摘要
PROJECT SUMMARY
Biological processes operate through molecular networks at the cellular level, and through cell–cell networks at
the tissue/organ level. Deciphering the “wiring” and “rewiring” of these networks under healthy and pathological
conditions is a fundamental yet challenging goal of biomedical research. The emergence of single-cell RNA
sequencing (scRNA-seq) has presented an unprecedented opportunity to achieve this goal by enabling genome-
wide quantification of mRNA in thousands of cells simultaneously and overcoming the heterogeneity problem of
bulk omics data. However, deep analysis of scRNA-seq data is challenging because only a small fraction of the
transcriptome of each cell can be captured. No sophisticated computational tools are available to systemically
reverse engineer intracellular gene–gene (especially signaling) networks and intercellular cell–cell interaction
networks from single-cell omics data. Signaling proteins and epigenetic factors are crucial drivers of network
rewiring and are most likely druggable, making them ideal therapeutic targets. Unfortunately, it is often difficult
to unbiasedly identify many of these drivers (hence known as hidden drivers) because they may not be
genetically altered or differentially expressed at the mRNA or protein levels, but rather are altered by
posttranslational or other modifications. We have developed systems biology algorithms to expose hidden drivers
from bulk omics data for antitumor immunity, tumorigenesis, and drug resistance. However, it remains even more
challenging to reveal cell type–specific hidden drivers from scRNA-seq data because of the “dropout” effects.
Using our established state-of-the-art scRNA-seq platform, we profiled >100,000 epithelial cells from mouse
mammary gland. Our ultradeep scRNA-seq profiling identified new subsets of somatic mammary stem cells
(MaSCs) and shed light on the long-standing debate over the identities of multipotent and unipotent MaSCs.
Therefore, building upon our expertise in systems biology, our robust preliminary results, and our established
collaborations with leaders in the fields of breast cancer and immunology, we propose to develop computational
algorithms to reverse engineer intracellular gene-wise and intercellular cell-wise networks (Aim 1), determine
cell type–specific hidden drivers and their network rewiring (Aim 2), from single-cell omics data, and translate
findings toward biomarkers and therapeutics to improve patient care (Aim 3). We will use information theory and
Bayesian modeling in the development of these algorithms. We will use MaSCs and our breast cancer models
as a proof of concept. With the increasing affordability of single-cell omics technologies, our algorithms can have
a significant impact on many fields of biomedical investigation. For example, delineation of network rewiring and
of critical drivers in stem cells and their niches will provide vital insights into cancer metastasis and relapse, and
lay the foundation for understanding and overcoming the resistance of tumors to immunotherapies. Network-
inferred hidden drivers are potential nonmutant therapeutic targets, and network-based biomarkers have
tremendous potential to better stratify patients for precision cancer medicine.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiyang Yu其他文献
Jiyang Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiyang Yu', 18)}}的其他基金
Intracellular and Intercellular Network Rewiring and Hidden Driver Inference from Single-Cell Data
细胞内和细胞间网络重新布线以及来自单细胞数据的隐藏驱动程序推断
- 批准号:
10009449 - 财政年份:2019
- 资助金额:
$ 33.99万 - 项目类别:
Intracellular and Intercellular Network Rewiring and Hidden Driver Inference from Single-Cell Data
细胞内和细胞间网络重新布线以及来自单细胞数据的隐藏驱动程序推断
- 批准号:
10680568 - 财政年份:2019
- 资助金额:
$ 33.99万 - 项目类别:
相似海外基金
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 33.99万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210282 - 财政年份:2022
- 资助金额:
$ 33.99万 - 项目类别:
Standard Grant
Bayesian analysis of generative models of sequence insertion events in HIV-1 envelope glycoproteins
HIV-1 包膜糖蛋白序列插入事件生成模型的贝叶斯分析
- 批准号:
574483-2022 - 财政年份:2022
- 资助金额:
$ 33.99万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210280 - 财政年份:2022
- 资助金额:
$ 33.99万 - 项目类别:
Standard Grant
World Meeting of the International Society for Bayesian Analysis 2022
2022 年国际贝叶斯分析学会世界会议
- 批准号:
2206934 - 财政年份:2022
- 资助金额:
$ 33.99万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210281 - 财政年份:2022
- 资助金额:
$ 33.99万 - 项目类别:
Standard Grant
Default Bayesian Analysis of Spatial Data
空间数据的默认贝叶斯分析
- 批准号:
2113375 - 财政年份:2021
- 资助金额:
$ 33.99万 - 项目类别:
Standard Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10701881 - 财政年份:2021
- 资助金额:
$ 33.99万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10298072 - 财政年份:2021
- 资助金额:
$ 33.99万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10473754 - 财政年份:2021
- 资助金额:
$ 33.99万 - 项目类别: