Connecting structure and fitness landscapes to overcome antibiotic resistance
连接结构和健身景观以克服抗生素耐药性
基本信息
- 批准号:10679332
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-13 至 2025-09-12
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAmino AcidsAntibiotic ResistanceAntibioticsAreaBindingBiochemistryBiological AssayBiophysicsChemosensitizationClinicalCollaborationsComplexCoupledCoyotesCrystallographyDevelopmentDrug DesignDrug resistanceEnterococcus faeciumEnvironmentEnzymatic BiochemistryEscherichia coliEventEvolutionFailureFamilyFutureGenesGenetic RecombinationGoalsGrantHeterogeneityHomologous GeneIn VitroLaboratoriesLibrariesLinkLongevityMapsMeasurementMeasuresMediatingMentorshipMicrobeModelingMolecularMolecular ConformationMutationNatureOutcomePathway interactionsPhenotypePhylogenetic AnalysisPlayPositioning AttributeProcessPropertyProteinsResearchResistanceResourcesRibosomesRoleSamplingScanningSequence AnalysisStreptograminsStreptomycesStructural BiochemistryStructureSubstrate SpecificityTechniquesTemperatureUniversitiesVariantWorkanalogantimicrobialbiophysical modelbiophysical propertiescombinatorialenzyme activityfitnessgain of functionglobal healthimprovedinsertion/deletion mutationinsightmicrobialmutantmutation screeningnovelnovel strategiespathogenpermissivenesspredictive modelingpreemptprotein functionprotein structureresistance generesistance mechanismresponsescreeningtraining opportunity
项目摘要
Project summary - Connecting structure and fitness landscapes to overcome antibiotic resistance
Antibiotic resistance is a pressing, multifaceted challenge. Pathogen evolution is outstripping the supply of new
compounds and analogues, threatening a global health crisis. New approaches to understand adaptation are
clearly necessary, but this is a difficult problem. The mechanisms of resistance are often unknown, as well as
the overall combination of changes that produce overall microbial fitness changes. Technical developments in
high-throughput biochemistry have allowed massive variant libraries to be assayed, which opens the door to
constructing predictive models of resistance, but these have until our recent work ignored complex mutations,
specifically insertions and deletions, which play a massive role by producing major changes to underlying
fitness landscapes with small mutations. To study how, we will combine experimental evolution, deep
mutational scanning, and multitemperature crystallography to produce an integrated model for how insertions
and deletions permit rapid changes to protein function.
We will use the Streptogramin A family as our model antibiotic. These are ribosome-targeting compounds
produced by Streptomyces. Resistance occurs through Vat proteins, which specifically inactivate
Streptogramin A (SA) via acetylation. A collaboration with the Seiple lab at UCSF has led to a modular
synthesis of SA that allows variants to be simply produced, as well as several novel compounds with
demonstrated reduced acetylation in vitro. We will determine how adaptation to these novel compounds
proceeds, and how indels within a key variable substrate-binding loop modulate it.
In my first aim, I will use experimental evolution to uncover how Vat proteins adapt to streptogramins, and how
the addition of insertions and deletions within this loop change the adaptive potential. In my second aim, I will
conduct high-throughput stability measurements to determine the mechanistic basis for resistance changes,
and then use deep mutational scanning to measure the mutational accessibility and biophysical basis for an
evolved adaptive trajectory. In my third aim, I will use cryo- and multitemperature crystallography to determine
the static and dynamic basis for indel-potentiated changes to substrate specificity towards new SAs.
The completion of these aims will produce an integrated picture of microbial adaptation and essential new
insight into how complex but understudied mutations radically shift the adaptive potential of genes. The cross-
disciplinary nature of the project will expose me to a number of techniques and approaches that will provide me
with excellent training opportunities under the mentorship of field-defining experts. The new frameworks and
techniques I will develop will help establish my scientific maturity as I pursue my goal of an independent
research position studying the mechanistic basis of molecular protein evolution at a university.
项目摘要 - 连接结构和健身景观以克服抗生素耐药性
抗生素耐药性是一个紧迫的、多方面的挑战。病原体的进化超过了新病原体的供应
化合物和类似物,威胁着全球健康危机。理解适应的新方法是
显然是必要的,但这是一个难题。耐药机制通常是未知的,而且
产生总体微生物适应性变化的变化的总体组合。技术发展
高通量生物化学允许分析大量变异文库,这打开了大门
构建耐药性预测模型,但直到我们最近的工作之前,这些模型都忽略了复杂的突变,
特别是插入和删除,它们通过对底层产生重大变化而发挥着巨大作用
具有小突变的健身景观。为了研究如何,我们将结合实验进化、深度
突变扫描和多温度晶体学可生成插入如何进行的集成模型
和缺失使得蛋白质功能快速改变。
我们将使用链阳菌素 A 家族作为我们的模型抗生素。这些是核糖体靶向化合物
由链霉菌产生。耐药性是通过 Vat 蛋白产生的,Vat 蛋白会特异性地灭活
链阳菌素 A (SA) 通过乙酰化作用。与加州大学旧金山分校 Seiple 实验室的合作开发了一个模块化的
SA 的合成,可以简单地生产变体,以及几种具有
体外证明乙酰化作用降低。我们将确定如何适应这些新化合物
的进展,以及关键可变底物结合环中的插入缺失如何调节它。
在我的第一个目标中,我将利用实验进化来揭示 Vat 蛋白如何适应链阳菌素,以及如何
在这个循环中添加插入和删除会改变适应性潜力。在我的第二个目标中,我会
进行高通量稳定性测量以确定电阻变化的机械基础,
然后使用深度突变扫描来测量突变的可及性和生物物理基础
进化出的自适应轨迹。在我的第三个目标中,我将使用低温和多温晶体学来确定
新 SA 底物特异性的插入缺失增强变化的静态和动态基础。
这些目标的完成将产生微生物适应和重要新功能的综合图景。
深入了解复杂但尚未充分研究的突变如何从根本上改变基因的适应潜力。交叉
该项目的学科性质将使我接触到许多技术和方法,这些技术和方法将为我提供帮助
在领域定义专家的指导下提供良好的培训机会。新的框架和
当我追求独立的目标时,我将开发的技术将有助于建立我的科学成熟度
在大学研究分子蛋白质进化的机制基础的研究职位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Bernard Macdonald其他文献
Christian Bernard Macdonald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别: