Molecular motor dynamics underlying bidirectional cargo transport in cells
细胞内双向货物运输的分子运动动力学
基本信息
- 批准号:10679824
- 负责人:
- 金额:$ 6.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffectAlzheimer&aposs DiseaseAmyotrophic Lateral SclerosisBindingBinding SitesCell divisionCellsCharacteristicsComplexComputer ModelsDNADefectDiffusionDiseaseDynein ATPaseEnsureFluorescence MicroscopyFluorescent ProbesGeometryGoalsGoldGrowthHeadHuntington DiseaseIndividualIntracellular TransportInvestigationKinesinKineticsLabelLinkLinker DNALocationMicroscopyMicrotubulesModelingMolecularMolecular MotorsMotorNeurodegenerative DisordersNeuronsParkinson DiseasePhysiologicalPropertyResolutionSingle-Stranded DNASpinal Muscular AtrophySystemTechniquesTestingTotal Internal Reflection FluorescentWarWorkdimerdynactinexperimental studyin vivoinsightlaser tweezernanoGoldnoveloptic tweezerparticlescaffoldsimulationsingle moleculetooltrafficking
项目摘要
Project Summary
Bidirectional transport is essential for cargo trafficking in cells and is required for proper growth and cell division.
Kinesin and dynein are microtubule motors responsible for bidirectional cargo transport in cells. Defects in
microtubule motor-based transport are linked to many neurodegenerative diseases including Alzheimer’s,
Parkinson’s, spinal muscular atrophy, amyotrophic lateral sclerosis, and Huntington’s disease; thus,
understanding the mechanisms underlying bidirectional transport is crucial to understanding transport
deficiencies in disease states and developing potential treatments. Despite important advances in understanding
the mechanochemical properties of individual motors, many questions remain regarding how motors work as
teams, and how kinesins and dyneins coordinate with one another. A widely supported model for bidirectional
transport is the ‘tug-of-war’ model in which teams of dynein and kinesin pull in opposite directions and the winning
team determines the direction of transport. However, this model cannot account for the motor coordination and
other regulatory factors involved. Previous modeling work identified the load-dependent detachment rate as the
key parameter that determines whether kinesin or dynein wins in a motor tug-of-war, and recent experimental
and theoretical work showed that vertical force inherent to widely used single-bead optical tweezer geometry
significantly accelerates motor detachment rates. Consistent with this, when kinesin and dynein were connected
through DNA linkages such that forces are only parallel to the microtubule, these two-motor complexes remained
attached for much longer times than seen in optical tweezer experiments. The first goal of this project is to
establish a novel technique that uses ssDNA as a pN-scale spring, to accurately determine motor stepping
characteristics in the absence of vertical forces, mimicking physiological conditions. Aim1 will test the ability of
transport kinesins and the dynein-dynactin-BicD2 complex to maintain stepping against a hindering load oriented
solely parallel to the microtubule. Initially, motors will be tracked with a fluorescent probe via TIRF microscopy,
and later a gold nanoparticle will be used to track in high resolution the load-dependent transitions in the kinesin
stepping cycle. Aim 2 will use a DNA origami scaffold to pair gold nanoparticle-labeled kinesin and dynein
together and track them via Interferometric Scattering (iSCAT) microscopy. The motor dynamics underlying the
bidirectional transport trajectories will be interpreted using a computational model of kinesin-dynein transport. In
Aim 3, teams of motors will be tracked to test how assisting and hindering loads inherent to multimotor
geometries affect the competition between kinesin and dynein teams. Uncovering the motor dynamics underlying
these complex multimotor systems is essential for understanding how intracellular bidirectional transport ensures
that specific cargoes are reliably transported to their proper locations in neurons and other cells.
项目摘要
双向运输对于细胞中的货物运输是必不可少的,并且是正常生长和细胞分裂所必需的。
驱动蛋白和动力蛋白是负责细胞内双向货物运输的微管马达。缺陷
基于微管马达的运输与许多神经退行性疾病有关,
帕金森氏症、脊髓性肌萎缩症、肌萎缩侧索硬化症和亨廷顿氏病;因此,
了解双向运输的基本机制对于理解运输至关重要
疾病状态和开发潜在的治疗方法的缺陷。尽管在理解上取得了重要进展
尽管单个马达的机械化学性质,但关于马达如何工作的许多问题仍然存在,
团队,以及驱动蛋白和动力蛋白如何相互协调。一种广泛支持的双向
运输是一种“拔河”模式,动力蛋白和驱动蛋白向相反的方向拉扯,
团队决定运输的方向。然而,该模型不能解释运动协调,
其他监管因素。先前的建模工作将载荷依赖的脱离率确定为
决定驱动蛋白或动力蛋白在运动拔河中获胜的关键参数,最近的实验
理论工作表明,广泛使用的单珠光镊几何形状所固有的垂直力
显著加速了运动神经分离率与此相一致的是,当驱动蛋白和动力蛋白连接在一起时,
通过DNA连接,使力只与微管平行,这两个马达复合体仍然存在,
附着的时间比光镊实验中看到的要长得多。该项目的第一个目标是
建立了一种新的技术,使用ssDNA作为pN刻度弹簧,以准确地确定电机步进
在没有垂直力的情况下的特性,模仿生理条件。AIM 1将测试
运输驱动蛋白和动力蛋白-动力蛋白-BicD 2复合物,以维持对阻碍性负荷定向的步进
与微管平行。最初,将通过TIRF显微镜用荧光探针跟踪电机,
稍后,金纳米颗粒将用于高分辨率地跟踪驱动蛋白中的负载依赖性跃迁
步进循环目标2将使用DNA折纸支架将金纳米颗粒标记的驱动蛋白和动力蛋白配对
并通过干涉散射(iSCAT)显微镜跟踪它们。运动动力学的基础是
将使用驱动蛋白-动力蛋白运输的计算模型来解释双向运输轨迹。在
目标3,将跟踪电机组,以测试多电机固有的辅助和阻碍负载
几何形状影响驱动蛋白和动力蛋白团队之间的竞争。揭示运动动力学的基础
这些复杂的多运动系统对于理解细胞内双向运输如何确保
特定的货物被可靠地运送到神经元和其他细胞中的适当位置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Crystal Renea Noell其他文献
Crystal Renea Noell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 6.91万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 6.91万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 6.91万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 6.91万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 6.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 6.91万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 6.91万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Studentship