The Effect of Blood Flow Changes in Brain Microvasculature on Pericyte-Endothelial Cell Interaction
脑微血管血流变化对周细胞-内皮细胞相互作用的影响
基本信息
- 批准号:10680128
- 负责人:
- 金额:$ 4.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-10 至 2025-06-09
- 项目状态:未结题
- 来源:
- 关键词:AblationAcuteAddressAdjuvantAdultAffectAgeAntibodiesAutomobile DrivingBindingBiological AssayBiomechanicsBiophysicsBloodBlood - brain barrier anatomyBlood VesselsBlood capillariesBlood flowBrainCD31 AntigensCapillary PermeabilityCause of DeathCell CommunicationCell physiologyCellsCerebrospinal FluidCerebrovascular CirculationCerebrovascular systemCoagulation ProcessCuesDataDevelopmentDiseaseEconomic BurdenEffectivenessEmbryonic DevelopmentEndothelial CellsExtracellular MatrixFaceGene ExpressionGlucoseGoalsHealthHemorrhageHomeostasisHumanHypoxiaITGA5 geneImageImpairmentIncubatedIndividualInflammationInflammatoryInflammatory ResponseInjectionsIntegrin InhibitionIntercellular JunctionsInterleukin-1 betaIschemic StrokeKnowledgeLasersLegal patentLentivirusLifeLinkMeasuresMechanicsMediatingMetabolicMicrocirculationModelingMolecularMolecular AnalysisMorphologyMusOrganPatient-Focused OutcomesPatientsPerfusionPericytesPhasePhysiologyPopulationPreparationProcessProtein BiosynthesisProteinsRecoveryReperfusion TherapyReporterRiskScanning Electron MicroscopySignal TransductionSignaling ProteinSliceSmall Interfering RNASocietiesStrokeTechnologyTestingThrombectomyThrombusTimeTissuesTranslatingUnited StatesUp-RegulationVascular SystemVitronectinacute strokeblood-brain barrier functionbrain endothelial cellcadherin 5cerebral microvasculaturecerebrovascularclinically significantconfocal imagingdesigndisabilityhemodynamicsimprovedimproved outcomein vivoin vivo Modelinhibitorlaboratory experiencelong term recoverymechanical signalnext generationnovelnovel therapeuticsoverexpressionparticlepharmacologicpostnatalpreventpublic health relevancereceptorresponsestroke patientstroke therapythrombolysistoolvector
项目摘要
PROJECT SUMMARY
Stroke is one of the most common causes of death and disability in the United States and worldwide. The
vascular system is meticulously regulated throughout life to adapt to changes in metabolic demand and blood
flow under widely variable conditions. Many ischemic stroke patients however fail to fully recover following an
acute attack. This impaired recovery is related in part to the limited return of perfusion within the brain
microcirculation, even after restoring the patency of occluded vessels – a scenario referred to as the “no-reflow”
phenomenon. Blood circulating within the vascular system exerts different types of forces on the surrounding
vessels. These forces are sensed and interpreted by the vascular cells to guide their development during
embryogenesis and regulate remodeling during postnatal and adult life. It has been also suggested in recent
years that there are signals downstream of mechanical changes that are exchanged between vascular cells.
Specifically, pericytes and endothelial cells integrate these cues to dynamically regulate blood vessel physiology,
capillary permeability, and changes in microvascular tone in health and in disease. Despite recent advances in
our knowledge of flow-mediated biomechanical inputs, the underlying molecular processes and their link to
hemodynamic forces in vivo are still emerging, in part due to limitations in the tools and models to measure these
forces. To help fill this gap in knowledge, the proposed study aims to investigate the impact of abrupt changes
in blood flow on two components of the blood-brain barrier -- pericytes and endothelial cells -- and their interaction
in mature brain vessels under static conditions following the loss of flow. We will utilize both ex vivo and in vivo
models to establish the mechanistic interactions underlying how pericytes and endothelial cells process,
interpret, and organize various mechanical signals. Additionally, we will look at corresponding changes in the
surrounding extracellular matrix that might accompany this cellular interplay, specifically interactions between
endothelial cell integrin α5 and pericyte-derived vitronectin within the capillary wall. Our preliminary data suggests
a two-phase response over time following an acute shift towards static conditions. We propose that an early
stage marked by a rapid inflammatory response, involving elevated interleukin-1beta expression, is overlaid by
a hypoxia-driven response in a subsequent phase, both contributing to cerebrovascular instability and an
increased risk for hemorrhagic conversion of ischemic stroke patients after re-establishing cerebral blood flow.
Identifying the key mechanistic determinants responsible for blood vessel destabilization in the brain during the
hyper-acute phase of stroke will provide targetable signals that could be clinically significant in advancing stroke
therapies.
项目摘要
中风是美国和全世界最常见的死亡和残疾原因之一。的
血管系统是精心调节整个生命,以适应变化的代谢需求和血液
在广泛变化的条件下流动。然而,许多缺血性中风患者在接受治疗后未能完全恢复。
急性发作。这种受损的恢复部分与脑内灌注的有限恢复有关
微循环,即使在恢复闭塞血管的通畅性之后-一种被称为"无复流"的情况
现象在血管系统内循环的血液对周围环境施加不同类型的力。
船舶.这些力量被血管细胞感知和解释,以指导它们在发育过程中的发育。
胚胎发生和调节在出生后和成年生活中的重塑。最近也有人提出,
在血管细胞之间交换的机械变化的下游有信号。
具体来说,周细胞和内皮细胞整合这些信号以动态调节血管生理学,
毛细血管通透性,以及健康和疾病中微血管张力的变化。尽管最近的进展,
我们对血流介导的生物力学输入、潜在的分子过程及其与
体内的血液动力学力仍然是新兴的,部分原因是测量这些力的工具和模型的局限性。
力.为了帮助填补这一知识空白,拟议的研究旨在调查突变的影响
血脑屏障的两个组成部分--周细胞和内皮细胞--及其相互作用
在血流丧失后的静态条件下的成熟脑血管中。我们将利用体外和体内
建立周细胞和内皮细胞如何处理的机制相互作用的模型,
解释和组织各种机械信号。此外,我们还将研究
周围的细胞外基质,可能伴随着这种细胞的相互作用,特别是相互作用之间
毛细血管壁内的内皮细胞整合素α 5和周细胞衍生的玻连蛋白。我们的初步数据显示
在向静态条件急剧转变之后,随时间的两阶段响应。我们建议,
以快速炎症反应为标志的阶段,包括白细胞介素-1 β表达的升高,
随后阶段的缺氧驱动反应,既导致脑血管不稳定,又导致脑血管不稳定。
缺血性卒中患者在重建脑血流后出血性转化的风险增加。
确定脑血管不稳定的关键机制决定因素,
中风超急性期将提供在中风进展中可能具有临床意义的靶向信号
治疗
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanaa Abdelazim其他文献
Hanaa Abdelazim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 4.23万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 4.23万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 4.23万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 4.23万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 4.23万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 4.23万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 4.23万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 4.23万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 4.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Operating Grants














{{item.name}}会员




