Developing controlled release immune complexes to treat multiple sclerosis

开发控释免疫复合物来治疗多发性硬化症

基本信息

项目摘要

In autoimmune diseases, the immune system mistakenly identifies “self”-molecules/antigens as foreign, resulting in an orchestrated attack of the body. In multiple sclerosis (MS), the immune system attack of the protective neuronal sheath – myelin - results in debilitating neurological impairment and poor quality of life. Current MS therapies are non-curative, require life-long compliance, and exhibit non-specific effects that increase patient susceptibility to infection. To circumvent MS treatment challenges, emerging therapies seek to direct myelin self-antigens (MOG) and immunomodulatory cues to redirect the immune response. Toll-like receptors, which detect pathogen-associated patterns on antigen presenting cells (APCs) are involved in MS. Recently, TLR9 antagonist, GpG has been shown to downregulate APC activation while promoting TREGS. Similarly, Rapamycin (Rapa), an immunosuppressant drug has garnered interest because it inhibits major pathways and promotes regulatory T cells (TREGS). Since coordination between the innate and adaptive immune system in MS drives disease, the proposed study will target these pathways simultaneously to promote antigen-specific immune tolerance in MS. We have previously developed self-assembled carriers built entirely from immune cues – termed immune polyelectrolyte multilayers (iPEMs) that enable combinatory delivery of multiple cues, controlled loading, and high cargo densities. iPEMs assembled using MOG and GpG reduce TLR9 signaling while promoting TREGS but show moderate efficacy in preclinical MS models. Since TREGS play a crucial role in moderating immune responses, the proposed work aims to load Rapa in the core of MOG/GpG iPEMs to enable co-delivery of MOG to induce antigen-specific immune responses, GpG to downregulate APC activity, and incorporate cross-links to control Rapa delivery to induce TREGS. In Aim 1, the hypothesis that cross-link density in MOG/GpG (Rapa) iPEMs is correlated to release intervals will be tested. This will be accomplished by generating a library of iPEMs from combinations of MOG, control antigen (ANT-CTRL), GpG, inactive control ODN (ODNCTRL), as well as Rapa with distinct cross-linking conditions to control release. In Aim 2, cross-linked iPEM release kinetics will be linked to APC activation and T cell polarization. In Aim 3, the efficacy of crosslinked iPEMs in preclinical MS models will be assessed to test the hypothesis that dual-targeting of innate and adaptive immunity is necessary to drive antigen-specific TREGS in MS. These studies will show that modulating both innate and adaptive immunity is necessary to generate robust antigen-specific responses in MS and will provide insight that informs the design of new therapies to treat MS and other autoimmune diseases. At the same time, new skills and techniques will be acquired throughout the course of the studies to propel the goal of the trainee to lead an academic research lab focused on developing immunomodulatory drug delivery systems after postdoctoral training.
在自身免疫性疾病中,免疫系统错误地将“自身”分子/抗原识别为外来物,导致

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marian Adriana Ackun-Farmmer其他文献

Marian Adriana Ackun-Farmmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 7.18万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 7.18万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了